Sucrose Dilaurate
Phân loại:
Thành phần khác
Mô tả:
Sucrose Dilaurate là gì?
Sucrose Dilaurate là chất phân hủy axit lauric và Sucrose. Sucrose Dilaurate là một Este axit béo Sucrose.
Este axit béo sacaroza là các este của đường sacaroza với các axit béo ăn được. Chúng có thể được điều chế từ sacaroza và metyl và etyl este của axit béo ăn được thường khi có mặt của dung môi. Một quy trình khác là phản ứng chất béo hoặc dầu ăn được và sacaroza để tạo ra một hỗn hợp các este sacaroza của axit béo và mono- và diglycerid, chúng đôi khi được gọi là “sucroglycerid”.
Este axit béo Sucrose gồm Sucrose Dilaurate, Sucrose Distearate, Sucrose Hexaerucate; Sucrose Hexaoleate / Hexapalmitate / Hexastearate, Sucrose Hexapalmitate,.... bao gồm sucrose, còn được gọi là đường ăn, kết hợp với các axit béo cụ thể khác nhau, hoặc sucrose kết hợp với hỗn hợp các axit béo từ các loại thực vật cụ thể (Sucrose Cocoate, Sucrose Polycottonseedate, Sucrose Polypalmate, Sucrose Polysoyate). Nhiều axit béo, bao gồm Axit Stearic, Axit Lauric, Axit Myristic, Axit Oleic, Axit Palmitic và Axit Dừa có trong thực phẩm.
Trong mỹ phẩm và các sản phẩm chăm sóc cá nhân, Sucrose Fatty Acid Esters được sử dụng trong nhiều loại sản phẩm như sản phẩm tắm, sản phẩm làm sạch, sản phẩm trang điểm, chế phẩm tay và cơ thể, sản phẩm chống nắng và dầu gội.
Sucrose Dilaurate là chất bột màu trắng. Mặc dù được sản xuất từ sucrose, các este sucrose không có vị ngọt mà nhạt hoặc đắng.
Công thức hóa học của Sucrose Dilaurate
Các tính chất của Sucrose Dilaurate là:
Ổn định nhiệt
Điểm nóng chảy của Sucrose Dilaurate là từ 40 ° C đến 60 ° C.. Các este sucrose có thể được đun nóng đến 185 ° C mà không làm mất chức năng của chúng.
PH ổn định
Sucrose Dilaurate bền trong pH từ 4 đến 8, vì vậy chúng có thể được sử dụng như một chất phụ gia trong hầu hết các loại thực phẩm. Ở pH cao hơn 8, quá trình xà phòng hóa (thủy phân liên kết este để giải phóng sacaroza ban đầu và muối của axit béo) có thể xảy ra. Quá trình thủy phân cũng có thể xảy ra ở pH thấp hơn 4.
Điều chế sản xuất Sucrose Dilaurate
Sucrose pha loãng có thể được phân tích bằng phương pháp HPLC pha ngược (RP) này với các điều kiện đơn giản. Pha động chứa axetonitril (MeCN), nước và axit photphoric. Đối với các ứng dụng tương thích với Mass-Spec (MS), axit photphoric cần được thay thế bằng axit formic. Các cột hạt nhỏ hơn 3 µm có sẵn cho các ứng dụng UPLC nhanh. Phương pháp sắc ký lỏng này có thể mở rộng và có thể được sử dụng để phân lập các tạp chất trong quá trình phân tách chuẩn bị. Nó cũng thích hợp cho dược động học.
Cơ chế hoạt động
Nhóm chất này rất đáng chú ý đối với phạm vi cân bằng ưa nước-ưa béo (HLB) mà nó bao gồm. Phần gốc sacaroza phân cực đóng vai trò là phần cuối ưa nước của phân tử, trong khi chuỗi axit béo dài đóng vai trò là phần cuối ưa béo của phân tử. Do đặc tính lưỡng tính này, các este sucrose hoạt động như chất nhũ hóa; tức là chúng có khả năng liên kết đồng thời cả nước và dầu.
Dược động học:
Dược lực học:
Xem thêm
Carotenoid là gì?
Một hợp chất hóa học tự nhiên Carotenoid được tìm thấy hầu hết trong các sắc tố thực vật, những thực vật có màu sắc mà chúng ta ăn hàng ngày. Thực vật, và một số loại carotenoid cung cấp màu cam, đỏ hoặc vàng khi chúng ta ăn chúng có lợi cho sức khỏe.
Một số thực phẩm từ động vật cũng chứa carotenoid, chẳng hạn như nhuyễn thể, động vật giáp xác và cá. Bản thân động vật biển này không sản sinh ra được carotenoid, nhưng chúng ăn nhiều thực vật có chứa tảo hoặc chúng ăn các sinh vật biển khác đã ăn nhiều carotenoid nên tổn hợp được carotenoid. Lòng đỏ trứng cũng chứa một lượng đáng kể carotenoid, đặc biệt là khi gà mái được cho ăn thức ăn giàu carotenoid.

Carotenoid được biết đến nhiều nhất là beta-carotene , nguồn cung cấp vitamin A chính từ thực vật. Một số carotenoid đã được phát hiện là có lợi cho sức khỏe được liệt kê ở đây cryptoxanthin, alpha-carotene và astaxanthin lycopene, lutein, zeaxanthin. Chúng chỉ tình cờ được tìm thấy trong các loại thực phẩm rất bổ dưỡng và nó đều hoạt động như chất chống oxy hóa
Một số nghiên cứu chỉ ra rằng carotenoid được biết đến là một dạng sắc tố hữu cơ được tìm thấy những loài sinh vật có thể quang hợp và trong thực vật. Như tảo, một số nấm và một vài loại vi khuẩn chẳng hạn. Nó là tên của một nhóm những hợp chất có công thức cấu tạo gần giống nhau và có tác dụng trong việc bảo vệ cơ thể cũng gần như nhau chứ không phải một tên gọi riêng.
Khoảng 600 loại carotenoid khác nhau đã được các nhà khoa học phát hiện ra. Chúng được phân vào hai nhóm chính là carotenoid và xanthophylis tùy theo cấu tạo.
Con người không thể tự tổng hợp ra carotenoid mà chỉ có thể sử dụng carotenoid từ việc ăn thực vật để cung cấp các nhóm chất cần thiết trong quá trình phát triển và bảo vệ cơ thể con người.
Tác dụng của carotenoid chống lại những tác nhân oxy hóa từ bên ngoài tới cơ thể. Có tới khoảng 600 nhóm carotenoid khác nhau đã được thống kê, và trong số này thì có tới 50 nhóm được tìm thấy ở thực phẩm. Trong máu của chúng ta chỉ có khoảng 15 loại. Để giúp sự ổn định sức khỏe của con người, 15 loại này góp phần quan trọng.
Điều chế sản xuất
Điều tra, nghiên cứu, chiết xuất và tinh chế một số thực vật phổ biến ở Việt Nam chứa các carotenoid, đồng thời nghiên cứu một số đặc tính sinh học của chúng lên cơ thể sinh vật, chuột. Thăm dò khả năng ứng dụng của các hợp chất trên vào sản xuất thuốc và thực phẩm thuốc phục vụ đời sống. Thu thập các thực vật chứa các carotenoid, tách chiết chất carotenoid bằng các hệ dung môi, tinh sạch carotenoid bằng sắc ký bản mỏng điều chế, sắc ký cột trên gel silicagel.
Nghiên cứu một số tính chất hóa lý và hoạt tính sinh học của các carotenoid như khả năng chống oxy hóa, kháng khuẩn. Khi thử hoạt tính của ba chế phẩm β-caroten, lycopen, lutein kết quả thu được lên hai enzyme catalase, peroxidase. Ở một thử nghiệm khác, tác dụng của ba chế phẩm β-caroten, lycopen, lutein thu được lên khả năng sinh trưởng của 12 loài vi sinh vật và chuột khi cho chúng uống cùng CCl4.
Tách chiết được β-caroten từ rau dệu bằng dung môi ete-dầu, tinh sạch bởi sắc ký lọc gel silicagel, lycopen từ cà chua bằng hệ dung môi n-hexan: axeton (6:4) và tinh sạch bằng sắc ký lọc gel silicagel, lutein từ cánh hoa cúc vạn thọ bằng hệ dung môi ete dầu, tinh sạch bằng sắc ký lọc gel silicagel. Đã khảo sát được thành phần β-carotenoid, lycopen, lutein từ 31 mẫu thực vật ở Việt Nam. Ở một số mẫu chứa nhiều lá rau sam, rau má… còn 1 nguồn nguyên liệu phổ biến là rau rệu mới được phát hiện thêm. Trong quả cà chua chín nhũn là nguồn cung cấp phong phú lycopen nhất. Trong các mẫu nghiên cứu hầu như đều có lutein với hàm lượng tương đối cao tuy nhiên cánh hoa cúc vạn thọ là mẫu có nhiều nhất.
Cơ chế hoạt động
Alpha-carotene, beta-carotene và beta-cryptoxanthin là những thành phần chuyển đổi được thành vitamin A trong cơ thể và tất cả đều được gọi là carotenoids, phần còn lại của carotenoids được liệt kê không thể được chuyển đổi thành vitamin A. Một tên gọi khác được gọi là carotenoids không chứa vitamin A. Đối với cơ thể chúng ta, hoạt chất beta-carotene là nguồn cung cấp vitamin A chính.
Sodium Polyacrylate là gì?
Sodium polyacrylate (Natri polуaᴄrуlate) là muối natri của polyacrylic acid - một loại polyme có trọng lượng phân tử cao. Polyme là một chất có cấu trúc phân tử được xây dựng từ một số lượng lớn các đơn vị có cấu trúc tương tự nhau được gọi là monome liên kết với nhau. Các monome của sodium polyacrylate là acrylic acid.

Sodium polyacrylate tồn tại dưới dạng bột trắng, mịn khi ở dạng khô nhưng khi được thêm vào nước, sodium polyacrylate biến thành một chất giống như gel với khả năng hấp thụ nước gấp nhiều lần trọng lượng phân tử của nó. Chính vì vậy, sodium polyacrylate được xem là một loại polyme siêu hấp thụ.
Đầu những năm 1960, các polyme siêu thấm đầu tiên đã được Bộ Nông nghiệp Hoa Kỳ phát triển. Polyme siêu thấm này có rất nhiều ứng dụng, như sử dụng trong mỹ phẩm, sử dụng trong làm nến, băng vết thương, tã lót, túi chườm nóng lạnh, đất hữu cơ cùng nhiều thứ khác.
Cơ chế hoạt động
Là một polyme hấp thụ, sodium polyacrylate được dùng làm chất ổn định nhũ tương, chất tạo màng, chất cố định tóc, chất dưỡng da và chất tạo độ nhớt. Trong tã trẻ em, bạn sẽ thấy sodium polyacrylate là chất gel giống như tinh thể để giúp thấm hút nước.

Trong chất tẩy rửa, sodium polyacrylate hoạt động như một tác nhân tạo phức, mà vô hiệu hóa được các kim loại nặng trong nước và bụi bẩn để các chất tẩy rửa có thể hiệu quả hơn trong sạch. Nó cũng được sử dụng như một chất làm đặc vì nó có thể hấp thụ và giữ các phân tử nước.
Chromium picolinate là gì?
Chromium là khoáng chất có trong một số loại thực phẩm. Trong cơ thể, cùng với Insulin (do tuyến tụy sản xuất), Chromium picolinate hoạt động với vai trò chuyển hóa carbohydrate. Trong thương mại, các nhà sản xuất đưa Chromium picolinate vào trong những loại dược phẩm để điều trị chứng thiếu crôm, giúp kiểm soát lượng đường trong máu ở bệnh nhân tiểu đường hoặc tiền tiểu đường, giảm cholesterol xấu, đồng thời đóng vai trò như thực phẩm bổ sung giảm cân.

Chromium picolinate thường được bán như thảo dược. Người dùng cần tìm mua nguồn thảo dược có nguồn gốc rõ ràng, nơi bán đáng tin cậy để tránh nguy cơ bị nhiễm bẩn, nhiễm các kim loại độc hại. Cơ thể chúng ta chỉ cần một lượng crôm nhất định và thường hiếm khi xảy ra thiếu hụt khoáng chất này ở người.
Cơ chế hoạt động của Chromium picolinate
Cùng với insulin được sản xuất bởi tuyến tụy, Chromium picolinate sẽ hoạt động để chuyển hóa carbohydrate trong cơ thể.
Betamethason dipropionat là gì?
Betamethason là một corticosteroid tác dụng kéo dài có đặc tính ức chế miễn dịch và chống viêm. Betamethason thường được sử dụng tại chỗ để kiểm soát các tình trạng viêm da có đáp ứng với corticosteroid như viêm da cơ địa hay bệnh vảy nến.

Betamethason thoa tại chỗ thường có sẵn ở dạng kem, gel, thuốc mỡ, kem dưỡng da hoặc dạng xịt. Các công thức Betamethason tại chỗ thường được bào chế với một trong hai loại muối là Betamethasone dipropionat hoặc Betamethason valerat. Hiệu lực của mỗi công thức Betamethason có thể khác nhau tùy thuộc vào loại muối được sử dụng.
Betamethason dipropionat chứa hai este, điều này làm cho thuốc hoà tan trong chất béo tốt hơn và khả năng thẩm thấu vào da tốt hơn. Do đó, Betamethason dipropionat sẽ mạnh hơn Betamethason valerat vì valerat chỉ chứa một este.
Điều chế sản xuất Betamethason dipropionat
Betamethason dipropionat so với các steroid khác sẽ có ưu điểm hoà tan lipid cao và thấm qua da tốt hơn. Betamethason dipropionat được sử dụng rộng rãi cho các bệnh lý da không nhiễm trùng, giúp giảm viêm và ngứa. Tuy nhiên, sản phẩm Betamethason dipropionat có yêu cầu cao về tạp chất, hiệu suất tinh chế thấp trong thời gian dài và một số tạp chất cụ thể khiến thuốc không đáp ứng được các yêu cầu của dược điển tiêu chuẩn cao như của Châu Âu.
Trong đó, sản phẩm Betamethason dipropionat thô được điều chế bằng quy trình truyền thống có hàm lượng tạp chất vượt xa quy định của dược điển Châu Âu. Do vấn đề cấp bách đó, hiện nay lĩnh vực kỹ thuật phát triển ra phương pháp mới để tinh chế Betamethason dipropionat nhằm cải thiện chất lượng sản phẩm và duy trì năng suất cao.

Tinh chế Betamethason dipropionat thô bằng cách sử dụng hỗn hợp dung môi acetone và dung môi hữu cơ ankan. Các tạp chất của Betamethason dipropionat luôn được hoà tan ở mức độ cao hơn trong quá trình tinh chế và sản phẩm Betamethason dipropionat tinh khiết sẽ được tách ra để có thể kiểm soát hiệu quả loại bỏ tạp chất.
Betamethason dipropionat tinh chế được cải thiện từ 97% lên đến hơn 99,5%. Phương pháp cụ thể bao gồm 4 bước sau:
- Bước 1: Thêm acetone vào sản phẩm Betamethason dipropionat thô để thu được dung dịch acetone của Betamethason dipropionat.
- Bước 2: Làm mất màu dung dịch acetone Betamethason dipropionat và lọc để thu được dung dịch acetone Betamethason dipropionat đã mất màu.
- Bước 3: Tiến hành chưng cất giảm áp suất dung dịch acetone Betamethason dipropionat đã khử màu để thu được dung dịch acetone Betamethason dipropionat đậm đặc.
- Bước 4: Nhỏ giọt dung môi hữu cơ ankan vào dung dịch acetone Betamethason dipropionat đậm đặc và thực hiện khuấy, kết tinh, đứng, lọc và sấy khô để thu được sản phẩm tinh chế Betamethason dipropionat.
Cơ chế hoạt động
Glucocorticoid ức chế quá trình apoptosis và phân tách bạch cầu trung tính, đồng thời ức chế NF-Kappa B và các yếu tố phiên mã gây viêm khác. Chúng cũng ức chế phospholipase A2, dẫn đến giảm sự hình thành các dẫn xuất của acid arachidonic. Ngoài ra, glucocorticoid còn thúc đẩy các cytokine chống viêm như interleukin-10.

Corticosteroid như betamethasone có thể hoạt động thông qua các con đường liên quan hoặc không liên quan đến gen. Quá trình liên quan đến gen diễn ra chậm hơn và xảy ra khi glucocorticoid kích hoạt các thụ thể glucocorticoid. Sau đó, bắt đầu các tác động xuôi dòng nhằm thúc đẩy quá trình phiên mã của các gen chống viêm, bao gồm phosphoenolpyruvate carboxykinase (PEPCK), chất đối kháng thụ thể IL-1 và tyrosine amino transferase (TAT).
Mặt khác, con đường không liên quan đến gen có thể tạo ra phản ứng nhanh hơn bằng cách điều chỉnh hoạt động của tế bào T, tiểu cầu và bạch cầu đơn nhân thông qua việc sử dụng các thụ thể gắn màng và chất truyền tin thứ hai.
C12-16 Alcohols là gì?
Danh pháp IUPAC: Tetradecan-1-ol.
PubChem: 8209.
Tên gọi khác: Alcohols, C12-16; Myristyl alcohol; Alcohols, C10-16; Alcohol, C12-15; Fatty alcohol(C14)…
C12-16 Alcohols còn được gọi là lauryl-myristyl alcohols là hỗn hợp của rượu béo với 12 đến 16 nguyên tử cacbon trong chuỗi alkyl. C12-16 Alcohols được xếp vào nhóm cồn béo.
Chúng ta cùng tìm hiểu về cồn béo:
-
Cồn béo còn được gọi là cồn tốt vì chúng thực sự tốt cho da. Các loại cồn này thường được sử dụng trong các loại kem cũng như kem dưỡng ẩm vì chúng có đặc tính làm dày da cũng như dưỡng ẩm. Hơn nữa, những loại cồn này thực sự rất tốt để kết hợp nước và dầu để tạo nhũ tương.
-
Những loại rượu này thường được chiết xuất từ cọ, dừa và các loại dầu tự nhiên khác chứa nhiều axit béo thiết yếu. Một lưu ý là mặc dù những loại cồn này rất lý tưởng cho da, chúng vẫn có thể gây kích ứng cho những người có làn da nhạy cảm. Nếu bạn có xu hướng nổi mụn ngay cả khi bạn đang sử dụng những loại cồn này, tốt hơn hết là bạn nên tìm kiếm các sản phẩm chăm sóc da hoàn toàn không chứa cồn.
C12-16 Alcohols ethoxyl hóa bền đến 50 độ C. Nó bị oxy hóa khi tiếp xúc với không khí để tạo thành peroxide và peracids. Dễ cháy nhưng không bắt lửa (điểm chớp cháy > 179 độ C). Nhiệt độ tự bốc cháy khoảng 230 độ C. Có thể phản ứng với chất oxy hóa mạnh, axit mạnh và bazơ mạnh. Không tương thích với đồng và hợp kim đồng và nhôm.

C12-16 Alcohols là một chất lỏng không màu, có mùi nhẹ và bị phân hủy ở nhiệt độ cao.
Các C12-16 Alcohols hoạt động như một chất ổn định nhũ tương và chất tăng độ nhớt, cho phép mọi thứ luôn dễ dàn trải và có màu kem. Nó có thể được tìm thấy trong son môi, kem chống nắng, kem dưỡng ẩm và các sản phẩm khác.
Điều chế sản xuất C12-16 Alcohols
C12-16 Alcohols là một hỗn hợp các rượu polyether có công thức R-O-(CH2CH2-O-)n-H trong đó R là nhóm ankyl từ C-12 đến C-16 và n bằng 1 đến 6. Được tổng hợp bằng cách xử lý hỗn hợp rượu từ C-12 đến C-16 với etylen oxit.
Đây là quy trình điều chế cồn béo nói chung:
-
Quy trình điều chế rượu béo polyethoxylates rượu béo có độ dài chuỗi polyethoxylate phân bố hẹp, trong đó rượu béo chứa từ khoảng 8 đến 18 nguyên tử cacbon được phản ứng với etylen oxit theo tỷ lệ giữa etylen oxit và rượu béo từ 1 đến khoảng 20 lần nhiệt độ giữa nhiệt độ phòng và 200 độ C
-
Với sự có mặt của chất xúc tác kim loại kiềm hoặc kim loại kiềm hyđrua, kim loại kiềm có mặt theo tỷ lệ mol của chất xúc tác đối với rượu béo nằm trong khoảng từ 0.9 đến khoảng 1.5, trong đó etylen oxit được thêm vào hỗn hợp rượu béo và chất xúc tác sau khi thêm chất xúc tác và trước khi tạo thành alkoxide rượu béo hoàn toàn khoảng 75%.
Cơ chế hoạt động
C12-16 Alcohols hay lauryl-myristyl alcohol được sử dụng làm chất hoạt động bề mặt và Este. Ứng dụng chính là trong sản xuất chất trung gian hóa học và chất hoạt động bề mặt. Nó cũng được sử dụng trong dầu nhờn và mỡ bôi trơn. Ngoài ra nó được sử dụng làm chất làm mềm, chất nhũ hóa và chất điều chỉnh độ nhớt trong mỹ phẩm và các sản phẩm chăm sóc cá nhân.
Với tính chất ổn định tạo bọt tự nhiên, C12-16 Alcohols có khả năng tăng cường làm sạch và với khả năng từ cồn là chất kích thích làm tăng thêm tính hữu dụng của chúng như một chất tẩy rửa hoặc xà phòng.
Centella Asiatica là gì?
Centella Asiatica là thành phần được chiết xuất từ cây rau má - loại thảo mộc được tìm thấy rộng rãi khắp nhiều vùng ở châu Á. Chiết xuất rau má Centella Asiatica từ lâu đã được ứng dụng vào trong y học tự nhiên, đặc biệt là tại Trung Quốc bởi nó có đặc tính chữa lành vết thương cho làn da.
Các nhà khoa học tìm thấy trong loại rau má nhỏ bé, bình dị này lại có chứa hàm lượng dưỡng chất rất dồi dào, không những tốt cho sức khỏe mà còn cho sắc đẹp. Cụ thể, trong 100g rau má có chứa chất xơ cellulose, vitamin A, vitamin B1, vitamin B2, vitamin B3 vitamin C, beta carotene, steroid, saponin, flavonoid, kẽm…
Centella Asiatica có khả năng giúp chữa lành và làm dịu da, kháng khuẩn, kháng viêm. Bên cạnh đó, chiết xuất của cây rau má còn có tác dụng rất tốt trong điều trị các bệnh về da như chàm, vẩy nến và sẹo; đồng thời chất này còn dưỡng ẩm rất hiệu quả, đặc biệt phù hợp cho các loại da khô.

Trong cuộc sống hiện đại đầy áp lực và bận rộn, làn da chúng ta rất dễ bị mất cân bằng bởi các nguyên nhân như thiếu ngủ hay tác nhân từ môi trường. Centella Asiatica với khả năng có thể củng cố hàng rào bảo vệ da và cải thiện vẻ ngoài tổng thể, sẽ giúp chúng ta lấy lại vẻ rạng rỡ từ một làn da mềm mại, mịn màng sau thời gian sử dụng.
Chính vì thế, không có gì ngạc nhiên khi Centella Asiatica luôn hiện diện phổ biến trong các thương hiệu chăm sóc da. Thành phần này rất được nhà sản xuất lẫn người dùng ưa chuộng, rất nhiều các sản phẩm khác nhau trên thị trường có chứa Centella Asiatica, từ kem chăm sóc da, dưỡng ẩm và thậm chí cả mỹ phẩm trang điểm.
Điều chế sản xuất Centella Asiatica
Quy trình điều chế Centella Asiatica như sau: Đầu tiên, rửa sạch rau má, thái nhỏ, mang đi phơi rồi sấy khô. Tiếp đó, người ta sẽ nghiền rau má thành bột thô và bảo quản ở nơi khô thoáng. Centella Asiatica sẽ được chiết xuất bằng phương pháp chiết nóng, với dung môi là nước, ở nhiệt độ 1000 độ C.
-
Phân lập hoạt chất bằng sắc ký cột silicagel pha thường (0,040-0,063mm, Merck), cột sắc ký lọc qua gel Sephadex LH 20.
-
Theo dõi các phân đoạn bằng sắc ký lớp mỏng pha thường pha thường (DC - Alufolien 60G F254 - Merck, ký hiệu 105715).
-
Phát hiện chất bằng đèn tử ngoại ở hai bước sóng 254nm và 366nm và dùng thuốc thử là dung dịch H2 SO4 10%/ ethanol.
Xác định cấu trúc các hợp chất phân lập được dựa trên kết quả phổ cộng hưởng từ hạt nhân một chiều (1 H-NMR, 13C-NMR, DEPT). Phổ cộng hưởng từ hạt nhân đo trên máy Bruker Avance AM500 FT-NMR tại Viện Hoá học, Viện Khoa học và Công nghệ Việt Nam. Chất chuẩn nội là tetramethyl silan.
Quy trình chiết xuất bột rau má (2kg) được chiết nóng, với dung môi là nước (8 lít/ lần), ở nhiệt độ 1000 độ C, trong 3 lần, mỗi lần 2 giờ. Dịch chiết thu được sau 3 lần gộp chung, lọc qua bông, sau đó cô dưới áp suất giảm đến dịch chiết đậm đặc.

Cơ chế hoạt động của Centella Asiatica
Chiết xuất rau má Centella Asiatica đã được giới y học nghiên cứu vào những năm 1940. Qua đó đã cho thấy rằng, thành phần này tác động tích cực đến quá trình tái tạo và phục hồi tế bào da. Đồng thời, chiết xuất Centella Asiatica còn kích thích sản sinh collagen, các tổn thương trên da cũng nhanh chóng được làm lành.
Mặt khác, Centella Asiatica còn thúc đẩy lưu thông máu, điều trị mụn, làm mờ thâm nám. Chính vì những lợi ích này mà chiết xuất rau má ngày càng được ứng dụng nhiều hơn trong các sản phẩm làm đẹp da.
Casein là gì?
Casein là một dạng protein chủ yếu có trong sữa và là thành phần thiết yếu của phô mai. Sản phẩm thương mại của casein có màu vàng có mùi thơm dễ chịu. Nhưng thực tế, casein là một chất rắn màu trắng vô định hình, không vị và không mùi.
Hai loại protein bao gồm casein và whey có trong sữa. Trong đó, casein chiếm khoảng 80% hàm lượng protein trong sữa, và whey là 20% lượng protein còn lại. Trong sữa bò có chứa khoảng 3% casein. Sự khác biệt quan trọng giữa hai loại protein phổ biến này là: Whey protein là dạng tiêu hóa nhanh còn casein protein là dạng tiêu hóa chậm.

Casein là một nguồn protein hoàn chỉnh, cung cấp axit amin thiết yếu cơ thể cần cho sự phát triển. Casein chứa các protein riêng biệt khác nhau và các hợp chất có hoạt tính sinh học mang lại lợi ích sức khỏe.
Casein protein có 2 dạng chính là micellar casein và casein hydrolysate. Micellar casein là dạng casein phổ biến nhất đã được phân tách các tạp chất ra khỏi sản phẩm, được tiêu hóa chậm rãi. Casein hydrolysate là casein thủy phân. Đây là loại casein đã được trải qua quá trình thủy phân enzyme nhằm giúp hấp thụ vào cơ nhanh hơn.
Trong một muỗng bột casein protein 33g chứa khoảng 24g protein, 3g carbs và 1g chất béo, đồng thời cũng có thể chứa các vi chất dinh dưỡng khác nhau. Tuy nhiên, những chất này có thể thay đổi tùy thuộc vào từng sản phẩm và thương hiệu.
Điều chế sản xuất
Hoạt chất casein là sản phẩm phụ của quá trình sản xuất phô mai. Các enzyme hoặc axit đặc biệt được thêm vào để làm cho casein trong sữa đông lại, hoặc chuyển sang trạng thái rắn. Có thể tách ra khỏi một chất lỏng. Chất lỏng đó là protein whey có thể rửa và sấy khô thành dạng bột để sử dụng trong các sản phẩm thực phẩm hoặc thực phẩm bổ sung. Có thể rửa và sấy khô phần sữa đông còn lại để tạo ra bột protein hoặc thêm vào các sản phẩm từ sữa, chẳng hạn như phô mai.
Cơ chế hoạt động
Hoạt chất casein là một loại protein sữa tiêu hóa chậm. Casein thường được dùng để bổ sung cho cơ thể giúp tăng cơ. Casein giải phóng axit amin từ từ, vì vậy thường được bổ sung trước khi đi ngủ để giúp phục hồi và giảm sự cố cơ trong khi ngủ.
Một số nghiên cứu đã chỉ ra rằng casein giúp thúc đẩy sự phát triển cơ bắp, cùng với rất nhiều lợi ích khác.
Thành phần chiết xuất casein được sử dụng trong xét nghiệm dị ứng.
Histidine là gì?
Histidine là một axit amin, có nhiều vai trò khác nhau trong chức năng tế bào. Histidine được sử dụng để tạo ra protein và enzyme trong cơ thể. Ngoài việc đóng vai trò cấu trúc và xúc tác trong nhiều enzym, các gốc histidine có thể trải qua quá trình metyl hóa xúc tác bởi enzym.
Histidine cũng là một chất chelat hóa tốt các ion kim loại như đồng, kẽm, mangan và coban. Khả năng này đến từ các nguyên tử nitơ imidazole có thể hoạt động như một chất cho hoặc nhận điện tử trong các trường hợp khác nhau.

Histidine là một axit amin tham gia tổng hợp protein, hình thành các protein và ảnh hưởng đến một số phản ứng trao đổi chất trong cơ thể.
Thông qua chế độ ăn uống, con người sẽ nhận được histidine. Thịt, cá, trứng, đậu nành, các sản phẩm từ sữa, ngũ cốc, gạo, lúa mì, lúa mạch đen, các loại hạt,... là những loại thực phẩm giàu protein thường chứa histidine.
Cơ chế hoạt động
Cơ thể chúng ta sử dụng histidine để tạo ra các hormone và chất chuyển hóa cụ thể có tác động đến chức năng thận, dẫn truyền thần kinh, dịch tiết dạ dày và hệ thống miễn dịch.
Bên cạnh đó, loại axit amin này cũng có tác động đến việc sửa chữa và tăng trưởng mô, tạo ra các tế bào máu và giúp bảo vệ tế bào thần kinh.
Nhiều enzym và hợp chất khác nhau trong cơ thể cũng được hình thành nhờ sự trợ giúp của histidine.
Betaine là gì?
Betaine là một amino acid - dẫn xuất của choline được tạo ra khi choline kết hợp với axit amin glycine, với cấu trúc hóa học có chứa 3 nhóm methyl bổ sung. Do vậy, betaine còn được gọi là trimethylglycine.
Betaine có một số chức năng sinh học quan trọng: Với chức năng là một phân tử nhường nhóm methyl, betaine tham gia vào quá trình methyl hóa (quá trình sinh hóa thiết yếu) hỗ trợ chức năng của gan, giải độc và hoạt động của tế bào trong cơ thể.

Tuy nhiên, vai trò quan trọng nhất của betaine là hỗ trợ cơ thể xử lý chất béo. Betaine cũng là một chất chống thẩm thấu thiết yếu chủ yếu ở thận, gan và não. Một lượng lớn betaine có thể tích lũy trong các tế bào mà không làm gián đoạn chức năng của tế bào, giúp bảo vệ các tế bào, protein và enzyme dưới áp lực thẩm thấu.
Trong sản xuất mỹ phẩm, betaine tương thích tốt với da, giúp làm giảm kích ứng gây ra do chất diện hoạt và tạo cảm giác mềm mại khi sử dụng. Theo một nghiên cứu được tiến hành trên 22 tình nguyện viên tại Thái Lan, 100% người tham gia nhận thấy màu da sáng hơn sau khi sử dụng dung dịch betaine 4%.
Điều chế sản xuất Betaine
Vào thế kỷ 19, người ta đã phát hiện ra betaine là một chất tự nhiên có trong củ cải đường (Beta Vulgaris). Trong một số thực phẩm như cám lúa mì, mầm lúa mì, rau bina, vi sinh vật và động vật không xương sống dưới nước, betaine cũng được tìm thấy ở nồng độ cao hơn.

Chúng ta có thể bổ sung betaine thông qua chế độ ăn uống. Ngoài ra, trong cơ thể, betaine được tổng hợp bởi sự kết hợp của choline và axit amin glycine.
Cơ chế hoạt động của Betaine
Betaine hình thành liên kết hydro với nước và những phân tử khác một cách dễ dàng nhờ vào đặc điểm về cấu trúc. Chất này có thể tan trong nước tạo dung dịch 55% bền vững về mặt hóa học.
Nhờ có betaine mà homocysteine trong máu được chuyển đổi thành methione. Điều này rất quan trọng, hàm lượng homocysteine ở mức cao sẽ ảnh hưởng xấu đến mạch máu, từ đó dễ dẫn đến sự phát triển các mảng bám và tình trạng gọi là xơ vữa động mạch (tắc nghẽn động mạch).
Ngoài ra, hàm lượng homocysteine cao cũng là một trong những nguyên nhân chính gây ra bệnh tim, đột quỵ cũng như các bệnh tim mạch khác. Betaine có khả năng hạ thấp homocysteine, tăng cường cơ và sức mạnh của sợi cơ, tăng cường độ chịu đựng và giúp giảm béo.
Ethylparaben là gì?
Ethylparaben là este ethyl của axit p-hydroxybenzoic. Ethylparaben là một trong những chất thuộc nhóm các hợp chất gọi là paraben (cùng methylparaben, butylparaben, isobutylparaben và propylparaben).

Paraben từng được dùng phổ biến trong công thức của các sản phẩm mỹ phẩm với vai trò của một chất bảo quản. So với các chất bảo quản khác, paraben được ưa chuộng bởi tính chất nhẹ nhàng, không nhạy cảm và hiệu quả cao của nó.
Ngoài ra, paraben nói chung, Ethylparaben nói riêng có nguồn gốc tự nhiên từ thực vật dưới dạng axit p-hydroxybenzoic (PHBA). Trên thực tế, paraben được sử dụng trong mỹ phẩm giống hệt với những chất có trong tự nhiên. Nếu paraben được hấp thụ qua da, cơ thể con người có thể nhanh chóng chuyển hóa chúng thành PHBA và loại bỏ chúng.

Tuy nhiên, thời gian qua, có nhiều ý kiến tranh cãi xung quanh việc sử dụng paraben do nhóm các hợp chất này bị cáo buộc liên quan đến các vấn đề sức khỏe.
Hydroxypropyl cellulose là gì?
Danh pháp quốc tế IUPAC: 4-(1-aminopropyl)-N,N,3-trimethylaniline.
PubChem CID: 123706
Tên gọi khác: Benzeneethanamine, 4-(dimethylamino)-alpha,2-dimethyl-, Oxypropylated cellulose, E463, Hyprolose, Lacrisert.
Công thức hóa học C12H20N2, trọng lượng phân tử 192.30
Hydroxypropyl cellulose là một dẫn chất ete của cellulose, trong đó một số nhóm hydroxyl trong các đơn vị glucose lặp lại được hydroxypropyl hóa tạo công thức OCH2CH(OH)CH3 bằng cách sử dụng propylene oxide.

Do mức độ hydroxypropyl hóa cao (~ 70%), Hydroxypropyl cellulose dẻo hơn và tương đối kỵ nước so với các cellulose ete hòa tan trong nước khác. Nó có thể hòa tan hoàn toàn trong nước và các dung môi hữu cơ phân cực, chẳng hạn như methanol, ethanol, rượu isopropyl (IPA) và acetone. Độ hòa tan của Hydroxypropyl cellulose trong nước phụ thuộc vào nhiệt độ, nó dễ hòa tan ở nhiệt độ dưới “điểm mây” khoảng 45 độ C (nhiệt độ dưới đó mà polyme bắt đầu phân tách pha, và hai pha xuất hiện).
Hydroxypropyl cellulose có hai loại: H-HPC và L-HPC, L-HPC thay thế thấp có chức năng như một chất kết dính và phân hủy trong lĩnh vực dược phẩm.
Hydroxypropyl cellulose là một chất trơ về mặt sinh lý. Trong một nghiên cứu về những con chuột được cho ăn hydroxypropyl cellulose hoặc cellulose không biến tính ở mức lên đến 5% trong chế độ ăn của chúng, người ta thấy rằng cả hai tương đương nhau về mặt sinh học ở chỗ cả hai đều không bị chuyển hóa.
Điều chế sản xuất Hydroxypropyl cellulose
Hydroxypropyl cellulose được sản xuất bằng cách phản ứng cellulose kiềm với propylene oxide ở áp suất và nhiệt độ cao để tạo ra cellulose ete, với 3.4-4.1 mol nhóm thế hydroxypropyl trên mỗi mol đơn vị gốc anhydroglucose (theo Ashland, 2001).
Để Hydroxypropyl cellulose không bị vón cục trong điều chế, Hydroxypropyl cellulose có thể được phân tán trong 50% thể tích nước nóng (> 60 độ C) và sau 10 phút hydrat hóa, phần nước còn lại có thể được thêm nước lạnh trong khi tiếp tục khuấy. Do khả năng kết dính cao, Hydroxypropyl cellulose có xu hướng đặc biệt phù hợp trong chế biến các viên nén liều cao, hoặc khó nén, khi các chất đó chỉ có thể thêm một lượng nhỏ chất kết dính.
Nói chung, sản xuất có thể đạt được bằng hai bước, kiềm hóa và ete hóa:
Bước 1: Kiềm hóa
Phân tán bột giấy cellulose nguyên liệu thô trong dung dịch kiềm (thường là natri hydroxit, 5–50%) để tạo thành cellulose kiềm.
Cell-OH + NaOH → Cell·O-Na+ + H2O
Bước 2: Ete hóa
Phản ứng của Cellulose kiềm với Propylen oxit trong điều kiện được kiểm soát nghiêm ngặt. Trong bước phản ứng này, các nhóm hydroxyl (-OH) trên các monome anhydroglucose của chuỗi cellulose được thay thế một phần bởi các nhóm hydroxypropoxy (–OCH2CHOHCH3) sau khi ete hóa.
Cơ chế hoạt động
Hydroxypropyl cellulose có sẵn trên thị trường với các cấp độ nhớt khác nhau, với cấp trọng lượng phân tử trung bình (MW) nằm trong khoảng từ 20 đến 1500kDa. Các cấp MW thấp thường được sử dụng làm chất kết dính. Hydroxypropyl cellulose là chất kết dính cao cấp và đã cho thấy hiệu quả kết dính tương đương và khả năng kết dính tốt khi được thêm vào dưới dạng dung dịch hoặc ở dạng bột khô (theo Skinner & Harcum, 1998).
Ngoài ra, đối với dạng bổ sung khô, các loại hạt có kích thước hạt mịn được ưa thích hơn vì tốc độ hydrat hóa nhanh hơn và sự đồng nhất của quá trình trộn và phân phối. Các lớp thô được ưu tiên để bổ sung dung dịch vì chúng phân tán dễ dàng hơn mà không bị vón cục.
Hydroxypropyl cellulose đặc biệt tốt trong việc giữ nước và tạo ra một lớp màng đóng vai trò như một rào cản chống thất thoát nước.
Butylated Hydroxytoluene là gì?
Butylated hydroxytoluene là một hợp chất hữu cơ lipophilic, tan kém trong nước nhưng có thể tan trong chất béo.
Butylated hydroxytoluene tồn tại ở dạng tinh thể, màu trắng, không mùi. Hóa chất này chủ yếu được sử dụng như một chất chống oxy hóa phụ gia thực phẩm trong các sản phẩm có chứa chất béo, dầu; đồng thời nó cũng được dùng rất phổ biến trong mỹ phẩm và dược phẩm.

Butylated hydroxytoluene còn được dùng trong điều trị mụn do dậy thì hoặc hội chứng suy giảm miễn dịch mắc phải (AIDS). Ngoài ra, trong một số trường hợp viêm loét butylated hydroxytoluene còn có thể dùng trực tiếp trên da nhờ cơ chế phá hủy lớp biểu bì bên ngoài của các tế bào virus. Mầm bệnh được ngăn chặn, không có cơ hội phát triển, ký sinh.
Điều chế sản xuất Butylated Hydroxytoluene
Butylated hydroxytoluene về mặt hóa học vẫn là một dẫn xuất của phenol. Trong tự nhiên, thực vật phù du, tảo xanh và ba loại vi khuẩn lam khác nhau có khả năng tạo ra butylated hydroxytoluene.
Butylated hydroxytoluene cũng có thể được tổng hợp nhân tạo. Người ta tiến hành điều chế bằng phản ứng của p-cresol (4-methylphenol) với isobutylene (2-methylpropene) xúc tác bởi axit sulfuric:
CH3(C6H4)OH + 2CH2 = C(CH3)2 → CH3)3C)2CH3C6H2OHCH3(C6H4)OH ((CH3)3C)2CH3C6H2OHCH3(C6H4)OH + 2CH2 = C(CH3)2 → H3)3C)2CH3C6H2OH
Ngoài ra, BHT được lấy từ 2,6-di-tert-butylphenol hydroxymethylation hoặc aminomethylation trong phản ứng thuỷ phân. Approximately 4 M kg/y là sản phẩm.

Cơ chế hoạt động của Butylated Hydroxytoluene
Tương tự như cơ chế tự tổng hợp của vitamin E, butylated hydroxytoluene cũng tạo cơ thế hoạt động như thế để ngăn ngừa quá trình oxy hóa diễn ra thông qua việc nhường một nguyên tử hydro – chất chuyển đổi các gốc peroxy thành hydroperoxide.
Butylated hydroxytoluene còn được đánh giá cao như một chất liên hợp với những chất chống oxy hóa khác.
Sản phẩm liên quan







