Tazobactam
Phân loại:
Thành phần khác
Mô tả:
Tazobactam là gì?
Tazobactam là một dẫn xuất sulfone axit penicillanic và chất ức chế beta-lactamase có hoạt tính kháng khuẩn. Tazobactam chứa vòng beta-lactam và liên kết không thể đảo ngược với beta-lactamase tại hoặc gần vị trí hoạt động của nó. Điều này bảo vệ các kháng sinh beta-lactam khác khỏi xúc tác beta-lactamase. Thuốc này được sử dụng cùng với các penicilin nhạy cảm với beta-lactamase để điều trị nhiễm trùng do các sinh vật sản xuất beta-lactamase gây ra.
Tazobactam là một dẫn xuất sulfone axit penicillanic và chất ức chế beta-lactamase
Công thức hóa học C10H12N4O5S, Tính chất vật lý Tazobactam là chất rắn vô định hình có nhiệt độ nóng chảy > 170oC. Trọng lượng phân tử 300.294. Dược động học của Tazobactam hiển thị các đặc tính dược động học điển hình của một hợp chất beta-lactam.
Điều chế sản xuất
Tazobactam là một thành viên của nhóm axit penicilanic là sulbactam, trong đó một trong các hydro nguyên metyl ngoại vòng được thay thế bằng nhóm 1,2,3-triazol-1-yl; được sử dụng (dưới dạng muối natri của nó) kết hợp với ceftolozane sulfate để điều trị nhiễm trùng trong ổ bụng và nhiễm trùng đường tiết niệu phức tạp. Nó có vai trò như một chất kháng khuẩn, chất chống nhiễm khuẩn và chất ức chế EC 3.5.2.6 (beta-lactamase). Nó là thành viên của axit penicillanic và là thành viên của triazol. Nó bắt nguồn từ một sulbactam. Nó là một axit liên hợp của một tazobacta.
Cơ chế hoạt động
Tazobactam là một chất ức chế không thể đảo ngược thuộc nhóm kháng sinh beta-lactamase của vi khuẩn. Giống như các kháng sinh beta-lactam khác, piperacillin được cho là có tác dụng diệt khuẩn thông qua việc ức chế tổng hợp thành tế bào vi khuẩn bằng cách liên kết với một hoặc nhiều protein liên kết với penicilin. Các kháng sinh beta-lactam ức chế bước transpeptid hóa cuối cùng của quá trình tổng hợp peptidoglycan trong thành tế bào vi khuẩn.
Dược động học:
Dược lực học:
Xem thêm
Glucosyl rutin là gì?
Danh pháp IUPAC: 4-G-alpha-D-glucopyranosylrutin.
PubChem CID: 5489459.
Tên gọi khác: Glu-rutin; alphaG-rutin; alpha-glucosylrutin.
Glucosyl rutin có công thức phân tử hóa học là C33H40O21 và trọng lượng phân tử là 772.7 g/mol.

Glucosyl rutin bắt nguồn từ chất Rutin, Rutin đã được tìm thấy trong nhiều loại trái cây như: mơ, anh đào, quả mọng, cam, quýt, đậu azuki, rau hay các loại thảo mộc như trà xanh và trà đen. Đặc biệt, nguồn phong phú nhất có chứa Rutin là kiều mạch. Rutin có đặc tính chống oxy hóa và khả năng ổn định sắc tố, tuy nhiên Rutin đã bị hạn chế trong ứng dụng do khả năng hòa tan kém. Từ đó người ta đã phát hiện và điều chế ra alpha Glucosyl rutin, một chất có khả năng vượt trội hơn Rutin về độ hòa tan trong nước, có thể cao hơn Rutin lên đến mười hai ngàn lần.
Điều chế sản xuất Glucosyl rutin
Alpha Glucosyl rutin được tạo thành ở nồng độ cao bằng cách cho phép enzym chuyển saccharide tác động lên chất lỏng có hàm lượng rutin cao ở dạng huyền phù hoặc dạng dung dịch, để thực hiện phản ứng chuyển saccharide. Kết quả là alpha Glucosyl rutin được thu hồi dễ dàng từ hỗn hợp phản ứng bằng cách cho phép nó tiếp xúc với nhựa macroreticular tổng hợp.
Alpha Glucosyl rutin vượt trội về khả năng hòa tan trong nước, khả năng chống lại ánh sáng và tính ổn định so với Rutin nguyên vẹn, cũng như có các hoạt động sinh lý như Rutin nguyên vẹn có.
Cơ chế hoạt động
Glucosyl rutin được kế thừa các đặc tính hữu ích từ Rutin đồng thời được nâng cấp lên một bậc về khả năng hòa tan trong nước. Alpha Glucosyl rutin được sử dụng thuận lợi như một chất tạo màu vàng, chất chống oxy hóa, chất ổn định, chất ngăn ngừa phai màu, chất cải thiện chất lượng, chất hấp thụ tia UV. Ngoài ra nó còn có khả năng ngăn ngừa sự hư hỏng trong thực phẩm, dược phẩm, hay sử dụng trong mỹ phẩm với vai trò chất tái tạo da và chất làm trắng da.
Carotenoid là gì?
Một hợp chất hóa học tự nhiên Carotenoid được tìm thấy hầu hết trong các sắc tố thực vật, những thực vật có màu sắc mà chúng ta ăn hàng ngày. Thực vật, và một số loại carotenoid cung cấp màu cam, đỏ hoặc vàng khi chúng ta ăn chúng có lợi cho sức khỏe.
Một số thực phẩm từ động vật cũng chứa carotenoid, chẳng hạn như nhuyễn thể, động vật giáp xác và cá. Bản thân động vật biển này không sản sinh ra được carotenoid, nhưng chúng ăn nhiều thực vật có chứa tảo hoặc chúng ăn các sinh vật biển khác đã ăn nhiều carotenoid nên tổn hợp được carotenoid. Lòng đỏ trứng cũng chứa một lượng đáng kể carotenoid, đặc biệt là khi gà mái được cho ăn thức ăn giàu carotenoid.

Carotenoid được biết đến nhiều nhất là beta-carotene , nguồn cung cấp vitamin A chính từ thực vật. Một số carotenoid đã được phát hiện là có lợi cho sức khỏe được liệt kê ở đây cryptoxanthin, alpha-carotene và astaxanthin lycopene, lutein, zeaxanthin. Chúng chỉ tình cờ được tìm thấy trong các loại thực phẩm rất bổ dưỡng và nó đều hoạt động như chất chống oxy hóa
Một số nghiên cứu chỉ ra rằng carotenoid được biết đến là một dạng sắc tố hữu cơ được tìm thấy những loài sinh vật có thể quang hợp và trong thực vật. Như tảo, một số nấm và một vài loại vi khuẩn chẳng hạn. Nó là tên của một nhóm những hợp chất có công thức cấu tạo gần giống nhau và có tác dụng trong việc bảo vệ cơ thể cũng gần như nhau chứ không phải một tên gọi riêng.
Khoảng 600 loại carotenoid khác nhau đã được các nhà khoa học phát hiện ra. Chúng được phân vào hai nhóm chính là carotenoid và xanthophylis tùy theo cấu tạo.
Con người không thể tự tổng hợp ra carotenoid mà chỉ có thể sử dụng carotenoid từ việc ăn thực vật để cung cấp các nhóm chất cần thiết trong quá trình phát triển và bảo vệ cơ thể con người.
Tác dụng của carotenoid chống lại những tác nhân oxy hóa từ bên ngoài tới cơ thể. Có tới khoảng 600 nhóm carotenoid khác nhau đã được thống kê, và trong số này thì có tới 50 nhóm được tìm thấy ở thực phẩm. Trong máu của chúng ta chỉ có khoảng 15 loại. Để giúp sự ổn định sức khỏe của con người, 15 loại này góp phần quan trọng.
Điều chế sản xuất
Điều tra, nghiên cứu, chiết xuất và tinh chế một số thực vật phổ biến ở Việt Nam chứa các carotenoid, đồng thời nghiên cứu một số đặc tính sinh học của chúng lên cơ thể sinh vật, chuột. Thăm dò khả năng ứng dụng của các hợp chất trên vào sản xuất thuốc và thực phẩm thuốc phục vụ đời sống. Thu thập các thực vật chứa các carotenoid, tách chiết chất carotenoid bằng các hệ dung môi, tinh sạch carotenoid bằng sắc ký bản mỏng điều chế, sắc ký cột trên gel silicagel.
Nghiên cứu một số tính chất hóa lý và hoạt tính sinh học của các carotenoid như khả năng chống oxy hóa, kháng khuẩn. Khi thử hoạt tính của ba chế phẩm β-caroten, lycopen, lutein kết quả thu được lên hai enzyme catalase, peroxidase. Ở một thử nghiệm khác, tác dụng của ba chế phẩm β-caroten, lycopen, lutein thu được lên khả năng sinh trưởng của 12 loài vi sinh vật và chuột khi cho chúng uống cùng CCl4.
Tách chiết được β-caroten từ rau dệu bằng dung môi ete-dầu, tinh sạch bởi sắc ký lọc gel silicagel, lycopen từ cà chua bằng hệ dung môi n-hexan: axeton (6:4) và tinh sạch bằng sắc ký lọc gel silicagel, lutein từ cánh hoa cúc vạn thọ bằng hệ dung môi ete dầu, tinh sạch bằng sắc ký lọc gel silicagel. Đã khảo sát được thành phần β-carotenoid, lycopen, lutein từ 31 mẫu thực vật ở Việt Nam. Ở một số mẫu chứa nhiều lá rau sam, rau má… còn 1 nguồn nguyên liệu phổ biến là rau rệu mới được phát hiện thêm. Trong quả cà chua chín nhũn là nguồn cung cấp phong phú lycopen nhất. Trong các mẫu nghiên cứu hầu như đều có lutein với hàm lượng tương đối cao tuy nhiên cánh hoa cúc vạn thọ là mẫu có nhiều nhất.
Cơ chế hoạt động
Alpha-carotene, beta-carotene và beta-cryptoxanthin là những thành phần chuyển đổi được thành vitamin A trong cơ thể và tất cả đều được gọi là carotenoids, phần còn lại của carotenoids được liệt kê không thể được chuyển đổi thành vitamin A. Một tên gọi khác được gọi là carotenoids không chứa vitamin A. Đối với cơ thể chúng ta, hoạt chất beta-carotene là nguồn cung cấp vitamin A chính.
Sulforaphane là gì?
Sulforaphane là hoạt chất giàu lưu huỳnh và đã được khoa học chứng minh cung cấp lợi ích sức khỏe mạnh mẽ. Thành phần này được kích hoạt khi glucoraphanin tiếp xúc với enzyme myrosinase (enzyme này chỉ được giải phóng và kích hoạt khi cây bị hư hại). Điều này có nghĩa, các loại rau họ cải phải được cắt, băm hoặc nhai mới có thể giải phóng myrosinase và kích hoạt sulforaphane.

Hàm lượng sulforaphane có trong rau tươi (rau sống) là cao nhất. Theo nghiên cứu, bông cải xanh sống chứa lượng sulforaphane cao gấp mười lần so với bông cải xanh đã được nấu chín.
Cơ chế hoạt động
Sulforaphane hoạt động chủ yếu thông qua việc ức chế Histone DeAcetylase (HDAC, nhóm các enzyme tương tác với DNA và một số thứ liên kết xung quanh với DNA được gọi là "histones"), từ đó làm tăng hoạt động của một con đường chuyển hóa được gọi là
Keap1-Nrf2 pathway (bằng cách tăng hoạt động Nrf2), bảo vệ chống lại sự hình thành ung thư, độc tố cũng như sự oxy hóa quá mức.
Madecassoside là gì?
Madecassoside là hợp chất được sử dụng suốt trong nhiều thế kỷ từ xưa tới nay như là một liệu pháp thảo dược quý giá trong y học và trong chăm sóc da.Không có gì ngạc nhiên nếu bạn bắt gặp thành phần có chứa Madecassoside trong công thức nhiều loại mỹ phẩm như toner, serum, mặt nạ…

Madecassoside rất giàu axit amin, beta carotene, axit béo và có nguồn gốc thực vật nên rất lành tính. Chính vì thế, hợp chất này từ lâu rất được ưa chuộng sử dụng. Tất cả làn da bị mụn, làn da đang bị tổn thương sau khi điều trị và da nhạy cảm đều có thể sử dụng thành phần Madecassoside. Hợp chất này rất hiệu quả để trị mụn cũng như giúp gia tăng tối đa hiệu quả sử dụng vitamin C và kem chống nắng trong dưỡng da hằng ngày.
Với những làn da nhạy cảm, da dễ nổi mụn, khi trang điểm dùng các sản phẩm kem nền có chứa Madecassoside sẽ không những hạn chế được tình trạng gây bí da của lớp nền mà còn ngăn ngừa mụn khi dùng trang điểm nhiều.
Cơ chế hoạt động
Theo các nghiên cứu, Madecassoside có khả năng loại bỏ tế bào gây viêm có tên là Cytokine, đồng thời tăng sản xuất axit hyaluronic tự nhiên của da. Quá trình tái tạo các tầng biểu bì của da nhờ đó cũng được thúc đẩy, tình trạng mụn viêm nhanh chóng được làm dịu, lớp hàng rào bảo vệ da cũng được củng cố.

Madecassoside còn kích thích sự tổng hợp collagen I và III – 2 collagen tác động trực tiếp lên sự thay đổi của da, từ đó ngăn ngừa sự suy giảm collagen và loại bỏ các gốc tự do gây hại cho da.
Methyl Methacrylate Crosspolymer là một loại polymer xốp được hình thành khi chất đồng trùng hợp của Metyl Metacrylat (một este hữu cơ) liên kết chéo với Glycol Dimethacrylat.

Nhờ có kích thước phân tử rất nhỏ mà Methyl Methacrylate Crosspolymer có khả năng giúp cho sản phẩm có kết cấu mướt mịn, giúp da được căng bóng. Bên cạnh đó, Methyl Methacrylate Crosspolymer còn có thể phân tán ánh sáng, từ đó làm mờ các nếp nhăn nông cũng như hút dầu thừa. Da nhờ công dụng này của Methyl Methacrylate Crosspolymer mà được mịn lỳ hơn.
ODA White là gì?
ODA White là Axit octadecenedioic ra đời bởi vì các nhà khoa học đang tìm kiếm một giải pháp thay thế hiệu quả cao hơn cho axit azelaic, một hoạt chất nổi tiếng được sử dụng cho mụn trứng cá, bệnh trứng cá đỏ và tăng sắc tố.
Axit azelaic được tìm thấy trong ngũ cốc, lúa mạch và lúa mạch đen, thường được sử dụng do chi phí thấp, mặc dù thực tế là các tác dụng phụ có thể bao gồm châm chích, bỏng rát, ngứa, ngứa ran, khô hoặc bong tróc da - có thể do nồng độ cao cần thiết (lên đến 20%) để trị mụn chẳng hạn.
Công thức hoá học của ODA White
O.D.A. White là thành phần làm sáng da với cơ chế hoạt động mới ức chế toàn bộ con đường chuyển hóa tổng hợp melanin từ nhân của tế bào hắc tố, phù hợp để điều trị các rối loạn sắc tố da như tàn nhang, nám, tăng sắc tố và da tối màu.
Điều chế sản xuất
ODA White có nguồn gốc từ hạt hướng dương và rất giống với axit Azeliac về cấu trúc phân tử của nó.
Axit octadecenedioic. O.D.A white hoạt động như một chất dưỡng da, làm sáng và trắng da, thu được bằng cách lên men sinh học từ axit oleic tự nhiên và thực vật.
Cơ chế hoạt động
Không giống như hầu hết các chất làm sáng da khác, ODA White không hoạt động bằng cách ức chế hoạt động của tyrosinase mà hoạt động bằng cách liên kết với thụ thể kích hoạt chất tăng sinh peroxisome (PPAR). Kết quả là, nó có thể thúc đẩy sự biệt hóa của các tế bào sừng, các tế bào chính trong lớp biểu bì.
ODA White được biết là có hoạt tính gấp 50 lần so với axit azelaic trong việc ức chế sự phát triển của vi khuẩn propionibacterium.
Nước/Eau trong mỹ phẩm là gì?
Nước (nước cất, nước tinh khiết, eau, aqua) là thành phần đầu tiên trong danh sách các thành phần của một sản phẩm mỹ phẩm nói chung. Để được sử dụng trong công thức sản xuất mỹ phẩm và các sản phẩm chăm sóc cá nhân, nước này phải “siêu tinh khiết”, nghĩa là không có độc tố, chất ô nhiễm và vi khuẩn.
Mặc dù có thể khó biết chính xác tỷ lệ phần trăm nước có trong mỹ phẩm, nhưng người tiêu dùng có thể dễ dàng biết liệu nước có phải là thành phần chính trong công thức của sản phẩm hay không. Nếu “nước” hoặc “eau”, “aqua” là những từ đầu tiên xuất hiện trong danh sách các thành phần, điều này có nghĩa là sản phẩm chứa nhiều nước hơn bất kỳ thành phần nào khác.

Gần đây, ngành công nghiệp mỹ phẩm nghiên cứu về việc sử dụng đa dạng các nguồn nước như nước tinh khiết, chiết xuất nước từ thực vật, thậm chí tìm cách loại bỏ hẳn thành phần nước. Việc giảm (hoặc loại bỏ) hàm lượng nước trong sản phẩm để tránh làm loãng các thành phần hoạt tính trong công thức. Mục đích cuối cùng của mỹ phẩm không chứa nước là tăng cường hiệu suất của các công thức mỹ phẩm.
Bên cạnh đó, việc sử dụng các thành phần tự nhiên và hữu cơ từ các loại dầu thực vật ngày càng nhiều nên việc sử dụng nước cũng có thể giảm. Nhưng bù lại, chiết xuất từ các hoạt chất tự nhiên cho một số sản phẩm mỹ phẩm như huyết thanh tự nhiên và chất tẩy rửa lại được tăng cường.
Tuy nhiên, rất khó loại bỏ hoàn toàn nước, các nhà sản xuất có thể thay thế các dạng tương tự nước như nước lấy từ các nguồn thực vật (nước dừa hoặc nước hoa hồng), từ nước ép thực vật (lô hội) hoặc các hỗn hợp gốc nước được sử dụng để chiết xuất hoạt động thực vật.
Điều chế, sản xuất
Nước dùng trong mỹ phẩm là nước nguyên chất với độ tinh khiết rất cao, được chưng cất bằng nhiều cách khác nhau như thẩm thấu ngược, lọc hay ngưng tụ,... để tinh chế.
Nước cất hình thành nhờ đun sôi nước và tạo ra hơi nước. Sau đó, hơi được xử lý làm lạnh và ngưng tụ thành nước. Trên thực tế, các chất gây ô nhiễm cùng với các khoáng chất có trong nước có điểm sôi cao hơn nước nên sau quá trình đun sôi sẽ được đọng lại.

Muốn tạo ra được nước cất, bạn cần chuẩn bị thiết bị chưng cất. Đầu tiên, lượng nước thông thường được mang đi đun sôi trong bình và hơi nước đưa vào bình ngưng. Bình ngưng chính là dụng cụ có tác dụng trữ lượng hơi nước ngưng tụ lại thành nước lỏng.
Dụng cụ này có 2 lớp bao gồm một lớp bên trong dẫn hơi nước đi qua và một lớp bên ngoài cho nước lạnh chảy qua. Nước lạnh có nhiệm vụ giữ cho các thành lớp bên trong dàn ngưng luôn ở nhiệt độ mát mẻ giúp hơi nước ngưng tụ nhanh chóng.
Nhờ đó, hơi nước sẽ chuyển trạng thái sang dạng lỏng bên trong bình ngưng và cuối cùng nhỏ xuống bình khác. Kết thúc quá trình, lượng nước thu được chính là nước cất.
NADH có trong tất cả các tế bào sống. Đây là một sản phẩm giáng hóa nicotinamide adenine dinucleotide, được tạo ra từ niacin, vitamin B.
Là một coenzyme, NADH có khả năng thúc đẩy các enzyme trong cơ thể phân hủy thực phẩm và biến thành năng lượng dưới dạng adenosine triphosphate (ATP). NADH tham gia vào nhiều phản ứng sinh hoá, do đó không có gì ngạc nhiên khi nó rất cần thiết cho sự phát triển của mọi tế bào trong cơ thể.

Đồng thời, NADH còn là chất mang điện tử chính trong quá trình sản xuất năng lượng. NADH được các nhà khoa học đánh giá là một chất chống oxy hóa mạnh nhất nên nó sẽ giúp bảo vệ tế bào khỏi bị hư hại hiệu quả.
Cơ chế hoạt động
NADH có vai trò tặng điện tử cho chuỗi vận chuyển điện tử. Coenzyme này hoạt động như một chất mang điện tử, mang các điện tử được giải phóng từ các con đường trao đổi chất khác nhau đến quá trình sản xuất năng lượng cuối cùng, tức là chuỗi vận chuyển điện tử. NADH tặng electron bằng cách cung cấp một phân tử hydro cho phân tử oxy để tạo ra nước trong chuỗi vận chuyển electron.
Methylparaben là gì?
Methylparaben là một trong những dẫn chất của paraben, có dạng các chuỗi ngắn, công thức hóa học là CH3 (C6H4 (OH) COO). Methylparaben có thể hòa tan trong nước, được da và cơ quan tiêu hóa hấp thụ dễ dàng.
Trong các loại sản phẩm chăm sóc da và chăm sóc cá nhân, Methylparaben là thành phần quen thuộc, giữ vai trò làm chất bảo quản để giúp làm tăng thời hạn sử dụng cho sản phẩm.
Methylparaben thường được nhà sản xuất ưu tiên bổ sung vào công thức sản phẩm serum và kem dưỡng da cùng với các paraben khác như butylparaben và propylparaben. Tuy nhiên, nhiều trường hợp Methylparaben được sử dụng độc lập nhờ vào đặc tính riêng biệt của nó.

Song song với những lợi ích mang lại, Methylparaben cũng là thành phần làm dấy lên nhiều lo ngại về tính an toàn cùng những tác dụng phụ của nó gây ra. Có thông tin cho rằng methylparaben có thể làm tăng nguy cơ ung thư mặc dù FDA và các nhà nghiên cứu cho đến nay chưa tìm thấy bằng chứng thuyết phục. Vì thế, hiện tại, Methylparaben vẫn được đánh giá là an toàn khi dùng trong mỹ phẩm, thực phẩm hoặc thuốc.
Tuy nhiên, nếu sử dụng vượt quá mức khuyến nghị, Methylparaben có thể gây hại ở mức thấp hoặc trung bình gây ra những phản ứng dị ứng). Methylparaben được xác định dùng với nồng độ 0,05 - 0,25% gần như không gây tác hại nào.
Cơ quan FDA đưa ra yêu cầu nhà sản xuất phải liệt kê cụ thể thành phần methylparaben cũng như các paraben khác nếu chúng có mặt trong bảng thành phần của sản phẩm. Do đó, người tiêu dùng sẽ dễ biết sản phẩm mình dự định mua có chứa methylparaben hay không bằng cách kiểm tra thông tin có trên nhãn/bao bì sản phẩm.
Isodecyl neopentanoate là gì?
Isodecyl neopentanoate là este của rượu decyl mạch nhánh và axit neopentanoic. Cồn decyl là cồn béo mạch thẳng với mười nguyên tử cacbon có thể được tạo ra từ axit decanoic, một loại axit béo tự nhiên được tìm thấy trong dầu dừa và dầu hạt cọ. Axit neopentanoic là một axit cacboxylic.

Thành phần Isodecyl neopentanoate được sử dụng chủ yếu trong kem chống nắng và chăm sóc da mặt. Tuy vậy không phải ai cũng biết đây là thành phần giúp bảo vệ làn da trước những tác hại từ môi trường bên ngoài. Đặc biệt là Isodecyl neopentanoate có khả năng chống lại tia cực tím.
Trong các công thức mỹ phẩm và các sản phẩm chăm sóc cá nhân khác Isodecyl neopentanoate cũng đóng vai trò như chất làm mềm, dưỡng da.
Điều chế sản xuất
Hoạt chất Isodecyl neopentanoate là este của rượu decyl mạch nhánh và axit neopentanoic. Cồn decyl là rượu béo mạch thẳng với mười nguyên tử cacbon có thể được tạo ra từ axit béo tự nhiên (decanoic) được tìm thấy trong dầu hạt cọ và dầu dừa. Axit neopentanoic là một axit cacboxylic.
Cơ chế hoạt động
Trong một số nghiên cứu về loại este làm mềm mỹ phẩm đã biết trong ống nghiệm để đánh giá các đặc tính hóa lý với hiệu suất cảm biến in vivo. Este làm mềm được khảo sát isodecyl neopentanoate. Este này đã được lựa chọn cho phạm vi trọng lượng phân tử rộng với các mạch alkyl cacbon phân nhánh và/hoặc mạch thẳng phân nhánh. Đối với đánh giá in vitro và in vivo, este được thử nghiệm như nguyên liệu tinh khiết và không được đưa vào công thức hoàn chỉnh.
Các đặc tính cảm quan trong công thức chăm sóc da được tạo ra chủ yếu bởi chất làm mềm, chất điều chỉnh lưu biến, chất nhũ hóa và chất giữ ẩm. Là thành phần của công thức mỹ phẩm, các este chất làm mềm hoạt động chủ yếu như chất dưỡng ẩm, chất làm dẻo và chất điều chỉnh xúc giác khi thoa lên da.
Trong nhũ tương chăm sóc da, chất làm mềm thường được sử dụng ở mức từ 3 – 20%w/w, đại diện cho thành phần chính thứ hai sau nước. Mức độ sử dụng này khác nhau tùy thuộc vào một số thông số bao gồm thành phần pha dầu, mức độ pha trộn chất nhũ hóa, khả năng tương thích giữa các thành phần, mong muốn sau khi cảm nhận và loại, mức độ sử dụng và độ hòa tan của bộ lọc UV trong este (đối với kem chống nắng).
Do đó, chất làm mềm da đóng một vai trò quan trọng trong việc ảnh hưởng đến cảm giác da của các công thức.
Dựa trên cấu trúc hóa học của chúng, chất làm mềm có thể được phân loại thành este, hydrocacbon, glyxerit, ete, rượu béo và các dẫn xuất silicone. Khi xây dựng công thức mỹ phẩm, việc nhà phát triển sản phẩm lựa chọn chất làm mềm phụ thuộc vào một số yếu tố quan trọng như cấu trúc hóa học, độ phân cực, trọng lượng phân tử, thuộc tính lan tỏa, độ nhớt, độ hòa tan, góc tiếp xúc và sức căng bề mặt.
Polyethylene glycol 400 là gì?
Polyetylen glycol (PEG) là sản phẩm được tạo ra từ oxit etylen ngưng tụ và nước có thể chứa nhiều dẫn xuất khác nhau và có nhiều chức năng khác nhau. Có nhiều loại PEG có tính ưa nước. PEG được sử dụng phổ biến như chất tăng cường độ thẩm thấu và được sử dụng nhiều trong các chế phẩm da liễu tại chỗ. PEG, cùng với nhiều dẫn xuất không ion của chúng, được sử dụng rộng rãi trong các sản phẩm mỹ phẩm như chất hoạt động bề mặt, chất nhũ hóa, chất làm sạch, chất giữ ẩm và chất dưỡng da.

Polyetylen glycol 400 (PEG 400) là loại polyetylen glycol có trọng lượng phân tử thấp với độc tính ở mức độ thấp. PEG rất ưa nước, vì vậy là một thành phần hữu ích trong công thức thuốc để tăng khả năng hòa tan và sinh khả dụng của các loại thuốc khó tan trong nước. PEG được sử dụng trong các dung dịch nhãn khoa để giảm bỏng, kích ứng và/hoặc khó chịu sau tình trạng khô mắt. PEG "400" chỉ ra rằng trọng lượng phân tử trung bình của PEG cụ thể là 400.
PEGyl hóa xảy ra khi PEG được gắn với nhiều loại thuốc protein, cho phép độ hòa tan cao hơn đối với các loại thuốc đã chọn. Ngoài ra, PEG như một loại thuốc nhuận tràng.
Điều chế sản xuất
Polyethylene glycol 400 (PEG) được sản xuất bởi phản ứng giữa nước với ethylene oxide, hoặc với ethylene glycol đồng thời với các oligomer của ethylene glycol. Phản ứng được xúc tác bởi các chất xúc tác cơ bản hay acid. Cả ethylene glycol và oligomer ưa chuộng hơn so với nước, vì có thể cho phép tạo ra các polymer với sự phân tán trọng lượng phân tử ở phạm vi hẹp. Độ dài của chuỗi polymer phụ thuộc tỷ lệ của những chất tương tác.
HOCH2CH2OH + n(CH2CH2O) → HO(CH2CH2O)n+1H
Tùy theo loại xúc tác tạo ra cơ chế của quá trình polymer hóa là cationic hoặc anionic. Cơ chế anionic được đánh giá tốt hơn vì có thể thu được PEG có độ phân tán thấp. Polymer hóa ethylene oxide là một quá trình tỏa nhiệt. Khi gia nhiệt tăng cao hay làm nhiễm bẩn ethylene oxide bởi chất xúc tác như kiềm hay oxide kim loại có thể phá hủy quá trình polymer hóa đồng thời có thể gây cháy nổ sau vài tiếng.
Cả Polyethylene oxide và polyethylene glycol cao phân tử tổng hợp do quá trình trùng hợp tạo nhũ. Phản ứng xúc tác với các muối hữu cơ của magie, canxi, nhôm. Muốn chặn sự kết tụ của các polymer có thể đưa vào một số phụ gia dạng chelate như dimethylglyoxime. Các chất xúc tác kiềm như Na2CO3, NaOH, KOH, được dùng điều chế các polyethylene có khối lượng phân tử nhỏ.
Cơ chế hoạt động
Polyethylene glycol 400 (PEG), tùy thuộc vào trọng lượng phân tử, có nhiều cơ chế hoạt động khác nhau. Đối với mục đích của PEG-400, cơ chế hoạt động trên các mô mắt sẽ là trọng tâm chính của cuộc thảo luận.
PEG-400 được coi là chất đo nước mắt, hoặc chất bôi trơn mắt tổng hợp giúp cải thiện một hoặc nhiều thành phần của màng lệ bằng cách tăng lượng nước mắt và độ ổn định và bằng cách bảo vệ bề mặt mắt chống lại sự hút ẩm.
Hydroxypropyl-guar (HPG) được sử dụng cùng với polyethylene glycol 400 (PEG) và propylene glycol (PG) như một chất tạo keo phù hợp với các bất thường của màng nước mắt và các bất thường hiện có trên bề mặt mắt.
PEG cung cấp chất bôi trơn và hoạt động như một chất hoạt động bề mặt bằng cách phủ lên mắt và tương tác với propylene glycol và các dung dịch khác giúp hoạt động như chất hoạt động bề mặt trên niêm mạc mắt. Điều này cho phép tạo ra các hiệu ứng nhẹ nhàng và lâu dài.
Các nghiên cứu gần đây liên quan đến phân phối thuốc dạng hạt nano đã chứng minh rằng PEG có thể đạt được sự phân phối thuốc bền vững. Việc đưa thuốc đến bề mặt niêm mạc là một thách thức đáng kể do sự hiện diện của lớp chất nhầy bảo vệ có tác dụng bẫy và nhanh chóng loại bỏ các phần tử lạ.
Các hạt nano được thiết kế để nhanh chóng vượt qua các rào cản niêm mạc (các hạt xuyên qua chất nhầy, “MPP”) đã được chứng minh là có triển vọng tăng cường phân phối thuốc và hiệu quả trên các bề mặt niêm mạc khác nhau. Các hạt xuyên qua chất nhầy được phủ nhiều bằng polyethylene glycol (PEG), bảo vệ lõi hạt nano khỏi sự kết dính với chất nhầy.
Polyetylen glycol, khi ở dạng tự do trong dung dịch, cũng có thể chứng tỏ lực hút đối với bề mặt của các loại túi, tế bào hoặc đại phân tử khác nhau, dẫn đến sự hấp phụ polyme và sau đó là lực đẩy hoặc lực hút, thông qua cầu nối, của các bề mặt hoặc túi - một lần nữa tùy thuộc vào nhiệt độ, trọng lượng phân tử và nồng độ của polyetylen glycol. Polyethylene glycol trọng lượng phân tử thấp (chẳng hạn như PEG-400) thường thúc đẩy các tế bào hoặc túi bám vào (lực hút cạn kiệt), polyethylene glycol trọng lượng phân tử cao khiến chúng đẩy lùi.
Tên gọi, danh pháp
Tên tiếng Việt: Kim ngân hoa.
Tên gọi khác: Nhẫn đông, song hoa.
Tên khoa học: Lonicera japonica Thunb. Theo Dược điển Việt Nam V, một số loài khác cùng chi như Lonicera dasystyla Rehd.; Lonicera confusa DC.; Lonicera cambodiana Pierre cũng có thể dùng làm vị thuốc Kim ngân hoa.
Chi Lonicera, họ Caprifoliaceae, bộ Dipsacales.
Đặc điểm tự nhiên
Cây leo bằng thân quấn, có thể dài tận 10m hoặc hơn. Cành non của cây có lớp lông đơn ngắn mịn bao phủ và lông tuyến có cuống, thường hay thấy ở thân già, màu hơi đỏ có vân.
Lá mọc đối, hơi dày, phiến lá có hình mũi mác hoặc trái xoan. Chiều dài lá từ 4 - 7 cm, rộng 2 - 4 cm, gốc tròn, đầu nhọn, có nhiều nếp trừ các gân của mặt dưới, cuống lá dài 5-6 mm, có lông tơ mịn.
Cụm hoa mọc thành từng đôi ở kẽ các lá tận cùng, tràng màu trắng hoặc bạc sau một thời gian sẽ chuyển sang màu vàng (nên có tên là Kim ngân), có lông mịn và lông tuyến ở ngoài, mùi thơm nhẹ đặc trưng, ống tràng dài từ 1,8 - 2 cm, có 2 môi, môi dài 1,5 - 1,8 cm, nhị 5 thò ra ngoài, dính ở họng tràng hoa, bao phấn đính lưng. Hoa có kèm lá bắc hình mũi mác, tròn có lông thưa ở mép, dài 5 răng, mảnh, đôi khi không bằng nhau, có lông mịn.
Quả hình cầu hoặc hình trứng, dài khoảng 5mm, có màu đen.

Phân bố, thu hái, chế biến
Phân bố: Có khoảng 10 loài thực vật thuộc chi Lonicera tại Việt Nam được dùng làm vị thuốc Kim ngân hoa. Kim ngân có nguồn gốc từ các vùng Đông Á như Trung Quốc, Nhật Bản, Triều Tiên. Sau này, cây được trồng rộng rãi tại nhiều nơi như Việt Nam, các nước Châu Mỹ, Úc,... Tại Việt Nam, Kim ngân hoa chủ yếu được thu hái tại Cao Bằng, Lạng Sơn, Bắc Giang,...
Thu hái: Kim ngân trồng vào thời vụ mùa đông và mùa xuân rất thuận lợi để sinh trưởng. Việc thu hái hoa nên thực hiện khi hoa gần chớm nở vào khoảng 9 - 10 giờ sáng khi sương đã ráo. Dây lá thì có thể thu hái quanh năm.
Chế biến: Sau khi thu hái, loại bỏ tạp chất rồi phơi trong bóng râm hoặc sấy nhẹ đến khi khô hoàn toàn. Tỷ lệ cành lá không quá 2%, các tạp chất khác không quá 0,5%.
Bảo quản: Nơi khô ráo, thoáng mát, tránh sâu mọt, độ ẩm không quá 12%.

Bộ phận sử dụng
Nụ hoa của cây Lonicera japonica Thunb. hoặc các cây cùng chi được sử dụng làm thuốc.
Nụ hoa dùng làm thuốc hình ống cong dài từ 1 - 5cm, đầu to, đường kính từ 0,2 - 0,5cm, phủ đầy lông ngắn và có màu vàng hoặc vàng nâu. Mùi thơm nhẹ và vị hơi đắng. Tỷ lệ hoa nở không quá 10%.

Sản phẩm liên quan









