Alumina
Phân loại:
Thành phần khác
Mô tả:
Alumina là gì?
Alumina là oxit của nhôm, công thức hóa học là Al2O3. Alumina tồn tại ở dạng chất rắn kết tinh màu trắng. Chúng ta hiếm khi tìm thấy Alumina tự nhiên ở dạng tự do vì nhôm quá phản ứng. Trong tự nhiên, nhôm sẽ có lớp oxit bảo phủ bề mặt nó, bảo vệ nó khỏi bị ăn mòn.
Alumina có khối lượng phân tử vào khoảng 102 g mol-1. Điểm nóng chảy và điểm sôicủa Alumina là trên 2000 độ C. Đặc tính của hợp chất này là nó không tan trong nước nhưng rất hút ẩm, không thể dẫn điện nhưng nó là chất dẫn nhiệt. Vì nhôm là một nguyên tố lưỡng tính nên nhôm oxit cũng là một oxit lưỡng tính.
Alumina thường xuất hiện ở dạng khoáng chất kết tinh. Nó rất hữu ích trong việc sản xuất kim loại nhôm bằng quy trình Hall. Trong quá trình này, Alumina được hòa tan trong criolit nóng chảy, và muối tạo thành được điện phân. Sau đó, chúng ta có thể thu được kim loại nhôm nguyên chất.
Hơn nữa, chúng ta có thể sử dụng hợp chất này như một chất mài mòn do độ cứng và sức mạnh của nó. Nó cũng hữu ích như một chất xúc tác để tăng cường tốc độ phản ứng hóa học. Ngoài ra, nó rất hữu ích như một chất hấp thụ nước để làm sạch khí và chất độn cho nhựa.
Các nhà sản xuất mỹ phẩm thường sử dụng Alumina trong các sản phẩm làm sạch, son môi, phấn má hồng và các sản phẩm khác. Theo tổ chức EWG (Hoa Kỳ), mặc dù Alumina có khả năng tăng cường hấp thụ qua da và tích lũy sinh học, nhưng nó vẫn được đánh giá là thành phần an toàn trong mỹ phẩm với liều lượng nhỏ.
Điều chế sản xuất Alumina
Alumina có nguồn gốc chủ yếu từ quặng bauxite thông qua quy trình của Bayer. Trong đó, vật liệu xút kết hợp với nhiệt và áp suất được sử dụng để hòa tan các khoáng chất chứa nhôm từ bauxite. Dư lượng bauxite sau đó được tách ra khỏi natri aluminate, cho phép alumina được kết tinh từ dung dịch còn lại. Alumina kết tinh sau đó được xử lý nhiệt trong lò quay để loại bỏ độ ẩm giới hạn, tạo ra sản phẩm alumina tinh khiết cuối cùng.
Cơ chế hoạt động
Alumina là một thành phần phụ đa năng chủ yếu hoạt động như một chất chứa sắc tố. Sắc tố ở đây có thể là thành phần chống nắng vật lý như titanium dioxide hoặc một thành phần tạo màu nào đó được pha trộn với các tiểu cầu alumina và được phủ bởi một số loại silicone như triethoxycarprylylsilane. Phương thức này giúp các sắc tố được phấn bố đồng đều và dễ tán hơn trên da. Alumina rất hữu ích cho các sản phẩm chống nắng vật lý cũng như các sản phẩm trang điểm.
Dược động học:
Dược lực học:
Xem thêm
Carrageenan là gì?
Carrageenan được chiết xuất từ loại tảo đỏ có nguồn gốc từ Ireland, mọc dọc theo bờ biển Anh, Pháp, Tây Ban Nha, Island. Là chất tạo gel, tạo đặc, carrageenan được chiết xuất bằng nước nóng dưới điều kiện khá kiềm, sau đó cho kết tủa/cô đặc.
Carrageenan có những đặc tính sau đây:
-
Có màu hơi vàng, màu nâu vàng nhạt hay màu trắng. Carrageenan tồn tại ở dạng bột thô, bột mịn và gần như không mùi.
-
Không tan trong ethanol nhưng carrageenan tan được trong nước ở nhiệt độ khoảng 80oC. Khi tan, carrageenan tạo thành một dung dịch sệt/dung dịch màu trắng đục có tính chảy. Lúc đầu, nếu được làm ẩm với cồn, glycerol, hay dung dịch bão hòa glucose và sucrose trong nước, carrageenan sẽ được phân tán dễ dàng trong nước hơn.
-
Tùy thuộc vào loại carrageenan, khối lượng phân tử, nhiệt độ, các ion có mặt và hàm lượng carrageenan mà độ nhớt của dung dịch sẽ khác nhau. Tuy nhiên, độ nhớt của Carrageenan sẽ tỉ lệ thuận với hàm lượng.
-
Carrageenantương tác được với nhiều loại gum - nhất là loại locust bean gum. Tùy hàm lượng, nó sẽ có tác dụng làm tăng độ nhớt, độ bền, độ đàn hồi của gel. Carrageenan sẽ làm tăng độ bền gel của guar gum nếu ở hàm lượng cao và ngược lại, nếu hàm lượng thấp thì chỉ làm tăng độ nhớt.
-
Khi carrageenan được cho vào những dung dịch của gum ghatti, alginate và pectin nó sẽ làm giảm độ nhớt của các dung dịch này.
Carrageenan trong thương mại gồm 3 loại sau:
-
Dạng kappa tạo nên sợi gel cứng do chứa ion kali; dạng này phản ứng với các protein sữa. Chủ yếu có nguồn gốc từ Kappaphycus alvarezii.
-
Các dạng iota tạo nên sợi gel mềm do các ion calci. Chủ yếu có nguồn gốc từ Eucheuma denticulatum.
-
Dạng lambda không tạo gel, chủ yếu làm chất làm dày trong sữa. Nguồn chủ yếu là từ Gigartina.
Trong thực phẩm, carrageenan là phụ gia quen thuộc E407 (hoặc E407a đối với “processed eucheuma seaweed”).
Điều chế sản xuất carrageenan
Carrageenan được thu nhận bằng cách chiết từ tảo biển bằng nước/dung dịch kiềm loãng. Carrageenan được thu lại bằng sự kết tủa bởi cồn, sấy thùng quay, hay kết tủa trong dung dịch KCl và sau đó làm lạnh. Methanol, ethanol và isopropanol là loại cồn được sử dụng trong suốt quá trình thu nhận và tinh sạch carrageenan.
Sản phẩm có thể chứa đường nhằm mục đích chuẩn hóa, chứa muối để thu được cấu trúc gel đặc trưng hay tính năng tạo đặc.
Cơ chế hoạt động của carrageenan
Carrageenan chứa các hóa chất có thể làm giảm bài tiết dạ dày và ruột. Một lượng lớn carrageenan kéo nước vào ruột, và điều này có thể giải thích tại sao nó có công dụng như thuốc nhuận tràng. Carrageenan cũng có thể làm giảm đau và sưng.
Carrageenan là các polysaccharide tạo bởi các chuỗi lặp lại của các đơn vị galactose và 3,6 anhydrogalactose (3,6-AG), cả dạng sulfat hóa và không sulfat hóa. Các đơn vị này tham gia các liên kết α-1,3 và β-1,4 glycosid.
Acrylic Acid Copolymer là gì?
Acrylic Acid Copolymer còn có tên gọi khác là Ethylene, Glycerin Acrylate. Đây là một loại Polymer và là nguyên liệu chính để tạo thành Hydrogel (tên thương mại là Lubrajel) có tác dụng dưỡng ẩm tương tự như hoạt chất Glycerin. Ngoài khả năng hút ẩm và giữ nước cho da, đây cũng là một thành phần có khả năng tạo độ mềm mịn trên bề mặt da tương tự như tác dụng của tất cả các thành phần Polymer khác.
Thành phần này có xuất xứ từ Ấn Độ, tồn tại ở dạng bột mịn màu trắng, không phân hủy ở nhiệt độ cao.
Điều chế sản xuất
Acrylic Acid Copolymer là phân tử lớn được lập lại từ các tiểu phân tử nhỏ là Polyacrylic Acid và Glycerin.
Ammonium là gì?
Ammonium Acryloyldimethyltaurate/Vp Copolymer là một polymer tổng hợp (phân tử lớn hình thành từ nhiều phân tử nhỏ gọi là monome) có khả năng tạo thành kết cấu dạng gel mướt mịn cho sản phẩm.
Trong mỹ phẩm, cụ thể là trong các loại kem dưỡng có cả nước và dầu, ammonium có công dụng của một chất làm đặc và điều chỉnh kết cấu sản phẩm được mướt mịn. Đó là lý do khi người dùng sử dụng sản phẩm sẽ không có cảm giác bị bết dính khó chịu.
Ammonium Acryloyldimethyltaurate/VP Copolymer tồn tại dưới dạng bột trắng, có thể hoạt động trong pH nồng độ khoảng từ 0.5 - 1.2%.
Acerola là gì?
Acerola là quả của cây sơ ri (Malpighia emarginata), đây là loại quả chứa một hàm lượng lớn acid ascorbic (vitamin C). Do đó Acerola được xem là nguồn bổ sung vitamin C dồi dào, thường được sử dụng trong các trường hợp thiếu hụt vitamin C.
Ngoài ra, chiết xuất Acerola còn chứa nhiều loại khoáng chất và các loại vitamin khác, bao gồm các dẫn xuất của acid benzoic, phenylpropanoid, flavonoid, anthocyanin và carotenoid. Trong những năm gần đây, ngày càng có nhiều sự quan tâm đến vai trò của Acerola như một loại thực phẩm chức năng, thực phẩm bổ sung cho sức khỏe.
Các chiết xuất và hợp chất mang hoạt tính sinh học phân lập từ Acerola được nghiên cứu về hoạt động sức khỏe và sinh học khác nhau, bao gồm tác dụng chống oxy hóa, chống khối u, chống tăng đường huyết, bảo vệ gan, bảo vệ da hay làm trắng da.

Điều chế sản xuất Acerola
Với sự gia tăng về nhu cầu chăm sóc sức khỏe, nhu cầu sử dụng các thực phẩm hỗ trợ ngày càng phổ biến, đặc biệt trong việc hỗ trợ các bệnh lý mạn tính. Và do với hàm lượng vitamin C cao, nhu cầu về các sản phẩm Acerola ở các nước như Mỹ, Nhật Bản, Châu Âu ngày càng tăng.
Acerola với tính acid cao và dễ hỏng nên thường được tiêu thụ sau khi chế biến, dưới dạng nước cốt hoặc nước ép. Trái Acerola trong thương mại thường được chế biến thành nước ép cô đặc, được dùng để chế biến các loại kem, mứt, nước giải khát, kẹo, sữa chua, soda, thực phẩm chức năng. Acerola còn được sử dụng để sản xuất các chế phẩm dinh dưỡng và dược phẩm khác.
Ảnh hưởng các kỹ thuật khác nhau như lọc, sấy, nhiệt, đóng gói và các phương pháp liên quan có thể tác động đáng kể đến sản phẩm cuối cùng. Nhìn chung, quá trình điều chế Acerola rất đa dạng, có thể điều chế để sử dụng dưới dạng bột, hỗn hợp, sản phẩm lên men hay thực phẩm bổ sung.
Cơ chế hoạt động
Hoạt động sinh học của Acerola chủ yếu là nhờ các hợp chất chống oxy hóa mạnh có trong nó như acid ascorbic (vitamin C), các chất dinh dưỡng như phenolic, carotenoid. Các hợp chất này chống lại nhiều bệnh liên quan đến quá trình stress oxy hóa. Trên thực tế, các cơ chế hoạt động của Acerola được chứng minh bằng cách sử dụng các loại chiết xuất khác nhau.

Mặc dù acid ascorbic có sự đóng góp mạnh mẽ trong hoạt động chống oxy hoá, tuy nhiên, khả năng chống oxy hóa tổng thể của Acerola được cho là do tác động hiệp đồng của nhiều chất dinh dưỡng có trong nó. Thành phần quan trọng khác mang lại hiệu quả chống oxy của Acerola là phenolic. Một nghiên cứu vào năm 2013 đã đánh giá sự đóng góp của phenolic trong Acerola có khả năng chống oxy hoá gồm anthocyanin, acid phenolic, flavonoid.
Một nghiên cứu khác mở rộng đã cho thấy Acerola hoạt động qua các cơ chế hoạt động dọn dẹp gốc tự do, hoạt động gây độc tế bào đặc biệt là khối u, hoạt động chống HIV, kháng khuẩn, kháng nấm, chống Helicobacter pylori và hoạt động đảo ngược MDR. Trong đó hoạt động gây độc tế bào đặc biệt là khối u, đảo ngược MDR cho thấy Acerola có thể ứng dụng trong phòng ngừa và hoá trị liệu ung thư.
Aspartic Acid là gì?
Aspartic Acid (tên gọi khác là axit aminosuccinic hoặc aspartate) là một axit amin không thiết yếu được tạo ra tự nhiên trong cơ thể con người. Chúng ta có thể bổ sung Aspartic Acid rất dễ dàng bằng cách áp dụng một chế độ ăn uống đa dạng thành phần.
Trong cơ thể con người, Aspartic Acid tham gia vào quá trình tổng hợp protein và điều hòa một số hormone. Nhưng nó cũng được tổng hợp hóa học để tạo ra các chất bổ sung chế độ ăn uống. Tuy nhiên, lợi ích của nó như là một chất bổ sung đang bị tranh cãi.
Aspartic Acid gồm hai dạng là axit L-aspartic và axit D-aspartic; trong đó axit L-aspartic trở thành một phần của protein được tổng hợp trong cơ thể, tham gia thúc đẩy sản xuất các kháng thể hỗ trợ chức năng của hệ thống miễn dịch cơ thể.
Còn axit D-aspartic có mặt ở trong tuyến yên và tinh hoàn, tham gia điều chỉnh, giải phóng và tổng hợp testosterone lẫn hormone luteinizing (LH). LH chịu trách nhiệm điều tiết kích thích rụng trứng trong chu kỳ kinh nguyệt. Nó cũng có tác dụng khuyến khích sản xuất tinh trùng ở nam giới.
Tương tự các acid amin khác (Histidine, Threonine, Alanine…), Aspartic Acid được EWG xếp vào nhóm chất dưỡng da, dưỡng tóc, chất chống tĩnh điện và thành phần hương liệu. Tuy nhiên, cơ chế hoạt động cụ thể của Aspartic Acid đối với làn da khi sử dụng trong các loại mỹ phẩm vẫn chưa được báo cáo.
Điều chế sản xuất Aspartic Acid
Vào những năm 1827, Aspartic Acid được tìm thấy lần đầu dưới dạng dẫn xuất khi đun sôi nước ép măng tây bởi Plisson.
Trong rất nhiều loại thực phẩm khác nhau cũng chứa Aspartic Acid, do đó bạn rất dễ dàng để bổ sung hợp chất này cho cơ thể.
2-Ethylhexyl salicylate là gì?
Ethylhexyl salicylate là một este benzoat và là một thành viên của phenol. Nó có nguồn gốc từ một axit salicylic. Còn được gọi là Ethylhexyl Salicylate. Octyl salicylate là một chất chống nắng hóa học hòa tan trong dầu, hấp thụ bức xạ UVB.
Tên khác: Axit benzoic, este 2-hydroxy-, 2-ethylhexyl; Axit salixylic, este 2-etylhexyl; Sunarome O; Sunarome WMO; USAF DO-11; WMO; Hệ điều hành Dermoblock; Escalol 587; Ethylhexyl salicylat; Hệ điều hành Neo Heliopan; Octyl salicylat; Uvinul O-18; 2-etylhexyl 2-hydroxybenzoat; Octisalate.
Công thức: C15H22O3

2 - Ethylhexyl salicylate có công thức hóa học là C15H22O3
Trọng lượng phân tử: 250.3334
Nó là một bộ lọc ánh nắng hữu cơ, hòa tan trong dầu, hấp thụ bức xạ UV-B. Nó là một este của axit salicylic và 2-ethylhexanol.
Nó là một chất lỏng không màu, đặc sánh như dầu thường tỏa ra hương hoa nhẹ nhàng. Salicylat là chất hấp thụ UV-B yếu. Chúng thường được sử dụng kết hợp với các bộ lọc UV khác như AakoSun OMC.
Ethylhexyl Salicylate đang được sử dụng trong nhiều loại mỹ phẩm để cung cấp Hệ số bảo vệ chống nắng (SPF) thích hợp trong kem chống nắng hoặc bảo vệ mỹ phẩm chống lại bức xạ tia cực tím.
Điều chế sản xuất
Octyl salicylate, hoặc 2-ethylhexyl salicylate, là một hợp chất hữu cơ được sử dụng như một thành phần trong kem chống nắng và mỹ phẩm để hấp thụ tia UVB (cực tím) từ mặt trời. Nó là một este được tạo thành bởi sự ngưng tụ của một axit salixylic với 2-etylhexanol. Nó là một chất lỏng dầu không màu, có mùi hoa nhẹ.
Cơ chế hoạt động
Nó là một este được tạo thành bởi sự ngưng tụ của một axit salixylic với 2-etylhexanol. Thành phần salicylate hấp thụ tia cực tím và bảo vệ da khỏi tác hại của việc tiếp xúc với ánh nắng. Phần ethylhexanol đóng vai trò như một loại rượu béo, bổ sung thêm các đặc tính làm mềm và giống dầu (chống nước).
ATP là gì?
Mọi sinh vật sống trên trái Đất đều cần năng lượng để hoạt động cũng như thúc đẩy quá trình trao đổi chất trong cơ thể. ATP là viết tắt của cụm từ Adenosin Triphosphat, chính là nguồn cung cấp năng lượng sinh học chủ yếu này cho cơ thể sinh vật. Nói một cách khác, ATP là phân tử mang năng lượng, chúng có chức năng vận chuyển năng lượng đến nơi mà các tế bào cần sử dụng.
Không ít người lầm tưởng rằng chất dinh dưỡng từ thức ăn chính là năng lượng sống mà chúng ta sử dụng. Thực tế thì sau khi tiêu hóa thức ăn, cơ thể sẽ dự trữ các chất dinh dưỡng dưới dạng carbohydrates (tinh bột), fat (chất béo) hay protein (chất đạm). Các chất này lại được phân giải thành hợp chất đơn giản hơn đó là glucose, acid amin, acid béo và theo đường máu vận chuyển đến các tế bào.
Tuy nhiên, các tế bào không thể trực tiếp lấy năng lượng từ những chất dinh dưỡng này. Chính vì vậy, chúng ta cần có các hệ năng lượng giúp xử lý, biến đổi chúng thành ATP. Các ATP này sẽ dự trữ và cung cấp năng lượng có thể sử dụng được cho các tế bào khi cần. Quá trình này không chỉ ra trong tất cả các loại động vật, thực vật và vi khuẩn (và ngay cả trong virus khi chúng đang di chuyển trong các vật chủ)
Trong tự nhiên, ATP chỉ có thể được tìm thấy trong một số loại thảo dược quý giá “Đông trùng hạ thảo” hay linh chi.
Điều chế và sản xuất
Cấu tạo của một ATP cơ bản bao gồm:
Adenine: Một cấu trúc vòng bao gồm các nguyên tử C, H và N.
Ribose: Một phân tử đường có 5 Carbon.
Phần đuôi với 3 phân tử phosphat vô cơ (Pi). Liên kết giữa 2 Pi cuối cùng chứa rất nhiều năng lượng. Do đó việc phân tách các phần này chính là mấu chốt của quá trình giải phóng năng lượng của ATP.
ATP có thể được tạo ra từ đường đơn và đường phức tạp cũng như từ lipid thông qua phản ứng oxy hóa khử. Để điều này xảy ra, trước tiên carbohydrate phải được phân hủy thành đường đơn, trong khi chất béo phải được chia thành axit béo và glycerol. Tuy nhiên, quá trình sản xuất ATP được điều chỉnh rất cao. Sản xuất của nó được kiểm soát thông qua nồng độ cơ chất, cơ chế phản hồi và cản trở dị ứng.
Cơ chế hoạt động của ATP
Trong môi trường ống nghiệm, khi một phân tử glucose phân tách thành CO2 và nước đồng thời sẽ giải phóng khoảng 686 kcal/mol. Năng lượng này được tỏa ra dưới dạng nhiệt năng và phải sử dụng máy hơi nước thì mới có thể chuyển thành công cơ học. Hiển nhiên điều này là không thể xảy ra trong môi trường tế bào.
Nhờ có các ATP, nguồn năng lượng phân giải này sẽ được cất trữ vào trong đó. Khi tế bào cần năng lượng, ATP sẽ được thủy phân làm gãy liên kết giữa Oxi với nguyên tử photphat cuối cùng. Kết quả quá trình này sẽ tạo ra một phân tử phosphat vô cơ (Pi), một ADP (Adenosin Diphosphat) và khoảng 7 kcal/mol năng lượng. Lúc này, ADP sẽ ngay lập tức được chuyển đổi trở lại thành ATP nhờ có enzyme ATP synthase nằm trong màng ti thể.
Isodecyl neopentanoate là gì?
Isodecyl neopentanoate là este của rượu decyl mạch nhánh và axit neopentanoic. Cồn decyl là cồn béo mạch thẳng với mười nguyên tử cacbon có thể được tạo ra từ axit decanoic, một loại axit béo tự nhiên được tìm thấy trong dầu dừa và dầu hạt cọ. Axit neopentanoic là một axit cacboxylic.
Thành phần Isodecyl neopentanoate được sử dụng chủ yếu trong kem chống nắng và chăm sóc da mặt. Tuy vậy không phải ai cũng biết đây là thành phần giúp bảo vệ làn da trước những tác hại từ môi trường bên ngoài. Đặc biệt là Isodecyl neopentanoate có khả năng chống lại tia cực tím.
Trong các công thức mỹ phẩm và các sản phẩm chăm sóc cá nhân khác Isodecyl neopentanoate cũng đóng vai trò như chất làm mềm, dưỡng da.
Điều chế sản xuất
Hoạt chất Isodecyl neopentanoate là este của rượu decyl mạch nhánh và axit neopentanoic. Cồn decyl là rượu béo mạch thẳng với mười nguyên tử cacbon có thể được tạo ra từ axit béo tự nhiên (decanoic) được tìm thấy trong dầu hạt cọ và dầu dừa. Axit neopentanoic là một axit cacboxylic.
Cơ chế hoạt động
Trong một số nghiên cứu về loại este làm mềm mỹ phẩm đã biết trong ống nghiệm để đánh giá các đặc tính hóa lý với hiệu suất cảm biến in vivo. Este làm mềm được khảo sát isodecyl neopentanoate. Este này đã được lựa chọn cho phạm vi trọng lượng phân tử rộng với các mạch alkyl cacbon phân nhánh và/hoặc mạch thẳng phân nhánh. Đối với đánh giá in vitro và in vivo, este được thử nghiệm như nguyên liệu tinh khiết và không được đưa vào công thức hoàn chỉnh.
Các đặc tính cảm quan trong công thức chăm sóc da được tạo ra chủ yếu bởi chất làm mềm, chất điều chỉnh lưu biến, chất nhũ hóa và chất giữ ẩm. Là thành phần của công thức mỹ phẩm, các este chất làm mềm hoạt động chủ yếu như chất dưỡng ẩm, chất làm dẻo và chất điều chỉnh xúc giác khi thoa lên da.
Trong nhũ tương chăm sóc da, chất làm mềm thường được sử dụng ở mức từ 3 – 20%w/w, đại diện cho thành phần chính thứ hai sau nước. Mức độ sử dụng này khác nhau tùy thuộc vào một số thông số bao gồm thành phần pha dầu, mức độ pha trộn chất nhũ hóa, khả năng tương thích giữa các thành phần, mong muốn sau khi cảm nhận và loại, mức độ sử dụng và độ hòa tan của bộ lọc UV trong este (đối với kem chống nắng).
Do đó, chất làm mềm da đóng một vai trò quan trọng trong việc ảnh hưởng đến cảm giác da của các công thức.
Dựa trên cấu trúc hóa học của chúng, chất làm mềm có thể được phân loại thành este, hydrocacbon, glyxerit, ete, rượu béo và các dẫn xuất silicone. Khi xây dựng công thức mỹ phẩm, việc nhà phát triển sản phẩm lựa chọn chất làm mềm phụ thuộc vào một số yếu tố quan trọng như cấu trúc hóa học, độ phân cực, trọng lượng phân tử, thuộc tính lan tỏa, độ nhớt, độ hòa tan, góc tiếp xúc và sức căng bề mặt.
Nano Silver là gì?
Nano Silver (nano bạc) là một dạng hạt tồn tại của kim loại bạc, gồm các hạt bạc có kích thước nano khoảng từ 1-100 nanomet (kích thước này mắt thường không nhìn thấy được).
Hạt Nano Silver có tỉ lệ diện tích bề mặt lớn hơn hàng triệu lần so với kim loại bạc, nhờ đó mà tính chất đặc hiệu của bạc được tăng lên đáng kể.
Màu sắc của dung dịch Nano Silver thay đổi từ vàng tới đỏ sẫm và có thể là màu gần như đen khi nồng độ lên tới 5,000 ppm. Lưu ý là các loại bột bán trên thị trường không chứa hạt nano do nano bạc không tồn tại ở thể rắn.
Điều chế sản xuất Nano Silver
Kích thước, hình thái và tính ổn định của các nano silver sẽ khác nhau tùy theo phương pháp được tổng hợp. Có ba phương pháp tổng hợp nano silver chính là tổng hợp vật lý, tổng hợp hóa học và tổng hợp sinh học.
Trong đó, tổng hợp sinh học là phương pháp xanh và thân thiện với môi trường (do quá trình khử không sử dụng enzym tương tự như tổng hợp hóa học nhưng tác nhân khử là vi sinh vật hoặc thực vật). Tuy nhiên, cần thận trọng với phương pháp này vì nó có thể làm lây nhiễm vi khuẩn, đặc biệt là ứng dụng trong y tế.
Cơ chế hoạt động của Nano Silver
Nhờ đặc tính kháng khuẩn của ion bạc và diện tích bề mặt lớn của các hạt nano mà nano silver có khả năng kháng khuẩn mạnh. Tùy theo nồng độ và kích thước mà hiệu quả của các hạt nano bạc sẽ khác nhau, chẳng hạn nồng độ cao sẽ hiệu quả tốt hơn.
Trong khi đó, cơ chế chống nấm nano silver có được là do chúng có thể phá vỡ màng tế bào và ức chế quá trình nảy chồi. Tại nồng độ 0.1mg/lít (tương đương 0.1ppm) nano bạc có khả năng kháng nấm. Với mật độ 105 tb/lít nấm Candida albicans bị vô hiệu hóa hoàn toàn sau 30 phút tiếp xúc.
Cơ chế tác dụng trên virus nhờ khả năng ức chế các giai đoạn phát triển của tế bào virus. Nano bạc được coi là một tác nhân phổ rộng chống lại nhiều chủng virus và không gây đề kháng.
Adenine là gì?
Adenine là một nucleobase (một dẫn xuất purine). Nó là một trong bốn nucleobase trong axit nucleic của DNA được biểu thị bằng các chữ cái G – C – A – T. Ba chất khác là guanine, cytosine và thymine. Các dẫn xuất của nó có nhiều vai trò khác nhau trong sinh hóa bao gồm hô hấp tế bào, ở dạng cả adenosine triphosphate (ATP) giàu năng lượng và các đồng yếu tố nicotinamide adenine dinucleotide (NAD), flavin adenine dinucleotide (FAD) và Coenzyme A.
Adenine có công thức hóa học là C5H5N5 và cấu trúc là một vòng cacbon-nitơ kép. Nó là một purine, vì vậy nó được tạo thành từ một vòng năm cạnh và một vòng sáu cạnh, mỗi vòng chứa nitơ, được hợp nhất với nhau. Phân tử adenin có thể được phân biệt với các nhân purin khác bằng nhóm amin gắn với cacbon của chúng ở vị trí 6. Ngoài ra còn có một nhóm hydro gắn với nitơ ở vị trí 9.

Adenine có công thức hóa học là C5H5N5
Nó cũng có có chức năng tổng hợp protein và là thành phần hóa học của DNA và RNA. Hình dạng của adenine bổ sung cho thymine trong DNA hoặc uracil trong RNA.
Điều chế sản xuất
Sự chuyển hóa purine liên quan đến sự hình thành của adenine và guanine. Cả adenine và guanine đều có nguồn gốc từ nucleotide inosine monophosphate (IMP), lần lượt được tổng hợp từ một ribose phosphate có sẵn từ trước thông qua một con đường phức tạp sử dụng các nguyên tử từ axit amin glycine, glutamine và axit aspartic, cũng như coenzyme tetrahydrofolat.
Phương pháp sản xuất adenine ở quy mô công nghiệp được công nhận hiện nay là một dạng sửa đổi của phương pháp formamide. Phương pháp này làm nóng formamide trong điều kiện 120 độ C trong bình kín trong 5 giờ để tạo thành adenin. Phản ứng được tăng lên nhiều về số lượng bằng cách sử dụng phốtpho oxyclorua (photphoryl clorua) hoặc photpho pentachlorua làm chất xúc tác axit và điều kiện ánh sáng mặt trời hoặc tia cực tím.
Sau khi 5 giờ trôi qua và dung dịch formamide-phospho oxychloride-adenine nguội bớt, nước được đưa vào bình có chứa formamide và bây giờ là adenine đã tạo thành.
Cơ chế hoạt động
Adenine tạo thành adenosine, một nucleoside, khi gắn vào ribose, và deoxyadenosine khi gắn vào deoxyribose, và nó tạo thành adenosine triphosphate (ATP), thúc đẩy nhiều quá trình trao đổi chất tế bào bằng cách truyền năng lượng hóa học giữa các phản ứng.
Magnesium Phosphate là gì?
Nếu nói về cấu trúc hóa học của Magnesium Phosphate, nó hình thành bởi sự đóng góp của 1 - 3 cation magie Mg2+ và 1 - 2 ion photphat HPO4-, PO43-. Vì muối thường bị hydrat hóa nên cấu trúc của muối được bao quanh bởi nhiều phân tử nước. Các dạng của muối Magie Phosphate là Monomagnesium phosphate (Mg(H2PO4)2, Dimagnesium phosphate MgHPO4 và Trimagnesium phosphate Mg3(PO4)2).
Khối lượng mol của Monomagnesium phosphate là 120,28 g/mol, Dimagnesium phosphate là 218,28 g/mol, Trimagnesium phosphate là 262,85 g/mol. Cả ba muối Monomagnesium, Dimagnesium và Trimagensium Phosphate đều có màu trắng, hiện diện ở dạng tinh thể và không có mùi, không hòa tan trong nước, hòa tan trong dung dịch NaCl bão hòa.

Điều chế sản xuất Magnesium Phosphate
Mg3(PO4)2 là một khoáng chất quan trọng được tìm thấy trong xương, trong hạt của nhiều loại thực vật và trong một số khoáng chất. Nhiều nguồn thực phẩm rất giàu magie và photpho. Trong đó sô-cô-la đen, bơ, các loại hạt, đậu, đậu phụ, hạt lanh, bí ngô, các loại cá béo như cá hồi, cá thu, chuối, rau bina, mù tạt là những nguồn giàu magie.
Ngoài ra, thịt gà, thịt lợn, hải sản như mực, cua, cá hồi, cá da trơn, các sản phẩm từ sữa, bí ngô, dầu hướng dương, các loại hạt là nguồn cung cấp photpho quan trọng cho cơ thể. Trong tự nhiên, những muối photphat này xuất hiện dưới dạng khoáng sản. Tuy nhiên cũng có thể sản xuất muối này với số lượng lớn đáp ứng nhu cầu của xã hội.

Người ta có thể dễ dàng điều chế Magie Phosphate bằng cách kết tủa Natri Phosphate và Magie Clorua:
Na3PO4 + 3 MgCl2 → 3 Na+ + 6Cl- + Mg3PO4
Tuy nhiên, phản ứng phổ biến nhất để sản xuất Monomagie photphat là với Magie Oxide và Axit Phosphoric.
MgO + H3PO4 → MgH2PO4 + H2O
Muối Monomagnesium Phosphate có thể tạo thành muối Dimagnesium Phosphate và Axit Photphoric tạo ra dưới dạng sản phẩm phụ.
Mg(H2PO4)2 + 3 H2O → Mg(HPO4).3H2O + H3PO4
Trimagie Photphat có thể được điều chế trong phòng thí nghiệm bằng cách trung hòa Axit Orthophotphoric bazơ bằng Magie Hydroxit.
2H3PO4 + 3Mg(OH)2 = Mg3(PO4)2 + 6H2O
Cơ chế hoạt động
Các tính chất hóa học của muối này tạo nên công dụng của nó như:
- Khi Mg3(PO4)2 phản ứng với Axit Clohiđric (HCl) tạo ra Magie Clorua và Axit Photphoric.
- Khi Mg3(PO4)2 gặp nước tạo ra Axit Photphoric và Magie Hydroxit.
- Khi Natri Hydroxit phản ứng với Mg3(PO4)2 tạo ra Natri Phosphat và Magie Hydroxit.
Steareth 21 là gì?
Steareth-21 cùng với các thành phần Steareth khác gồm có Steareth-3, Steareth-5, Steareth-8, Steareth-14, Steareth-16, Steareth-25, Steareth-27, Steareth-30, Steareth-40, Steareth-50, Steareth-80, Steareth-100, Steareth-200 là các Ete polyethylene glycol của Stearic Acid và là hợp chất dạng sáp.
Steareth-21 màu trắng đục, có chức năng như chất hoạt động bề mặt, chất nhũ hóa và chất hòa tan. Các đặc tính này đều giúp tạo tính thẩm mỹ tối ưu cho các công thức chăm sóc da.
Chất này cũng tương tự như Steareth-20 nhưng dễ tan trong nước hơn. Steareth-21 sẽ hoạt động tốt khi kết hợp với chất nhũ hóa tan trong dầu như Steareth-2 vì chúng có thể cùng nhau tạo thành một bộ đôi nhũ hóa đặc biệt ổn định.
Điều chế sản xuất
Các thành phần Steareth được điều chế bằng cách tương tác với khí Etylen oxit, trung gian hóa học với rượu Stearyl. Quá trình này tạo thành một hợp chất ổn định hoàn toàn mới. Con số đứng sau từ Steareth (ví dụ số 21) cho biết số đơn vị Etylen oxit trung bình được sử dụng trong quá trình điều chế.
Cơ chế hoạt động
Khi thêm Steareth-21 vào công thức có tác dụng làm giảm lực tương tác giữa các phân tử của chất lỏng khác để tạo thành nhũ tương.
Sản phẩm liên quan