Glycine
Phân loại:
Thành phần khác
Mô tả:
Glycine là gì?
Glycine là một axit amin giúp xây dựng khối protein, cần cho sự phát triển, duy trì mô để tạo ra các chất quan trọng chẳng hạn như hormone và enzyme. Thành phần này tham gia vào việc truyền tín hiệu hóa học trong não nên được dùng cho bệnh nhân tâm thần phân liệt và cải thiện trí nhớ.
Glycine không được xem là axit amin thiết yếu vì cơ thể có thể tự tạo ra từ các hóa chất khác. Các nguồn chính của glycine là những loại thực phẩm giàu protein chẳng hạn như thịt, cá, sữa và các loại đậu. Ngoài ra, có thể lấy glycine từ gelatin - chất được tạo ra từ collagen được thêm vào các sản phẩm thực phẩm khác nhau để cải thiện tính nhất quán.

Glycine có thể được sử dụng cho các mục đích như giúp giảm nguy cơ rối loạn tâm thần, phòng chống ung thư và tăng cường trí nhớ; bảo vệ thận khỏi tác dụng phụ có hại của một số loại thuốc được sử dụng sau khi cấy ghép nội tạng, cũng như bảo vệ gan khỏi tác hại của rượu.
Bên cạnh đó, glycine còn dùng trong hỗ trợ điều trị tâm thần phân liệt, đột quỵ, khó ngủ, tăng sản tuyến tiền liệt lành tính (BPH), hội chứng chuyển hóa và một số rối loạn chuyển hóa di truyền hiếm gặp.
Ngoài ra, người ta còn dùng glycine bôi trực tiếp lên da để điều trị loét chân và chữa lành vết thương khác.
Ngoài thực phẩm, bạn có thể bổ sung glycine dưới dạng thực phẩm chức năng ở dạng viên nang hoặc bột. Nếu bạn không thích uống thuốc, dạng bột dễ dàng hòa tan trong nước và có vị ngọt.
Điều chế sản xuất Glycine
Trong cơ thể người, glycine được tổng hợp hóa sinh trong gan từ các axit amin, serine và threonine. Thành phần này được tìm thấy với nồng độ cao bên trong da, mô liên kết của các khớp và mô cơ.
Glycine được phát hiện vào năm 1820 khi Henri Braconnot luộc gelatin với acid sulfuric. Về sau, glycine được sản xuất công nghiệp bằng cách xử lý axit chloroacetic với amoniac.
Dược động học:
Dược lực học:
Xem thêm
Beta-Sitosterol là gì?
Beta-sitosterol hay β-Sitosterol (C29H50O) là chất được tìm thấy trong thực vật, cụ thể là trong trái cây, rau, quả và hạt. Ngoài ra, Beta-sitosterol còn có sẵn trong dạng bổ sung chế độ ăn uống.
Được các nhà hóa học gọi là "ester sterol của thực vật”, Beta-sitosterol có thể sử dụng để làm thuốc, mang lại một số lợi ích nhất định cho sức khỏe. Cụ thể như Beta-sitosterol có khả năng làm giảm mức cholesterol bằng cách hạn chế lượng cholesterol vào cơ thể chúng ta. Mặt khác, Beta-sitosterol còn có khả năng liên kết cùng tuyến tiền liệt giúp làm giảm sưng/viêm.

Cơ chế hoạt động
Có công thức phân tử tương tự cholesterol, Beta-sitosterol còn được gọi là sterol thực vật. Beta-sitosterol hoạt động như một chất oxy hóa tự nhiên, có khả năng ức chế sterol methyltransferase, làm giảm cholesterol máu, giảm viêm sưng trong bệnh phì đại lành tính tiền liệt tuyến (BPH).
Betamethason dipropionat là gì?
Betamethason là một corticosteroid tác dụng kéo dài có đặc tính ức chế miễn dịch và chống viêm. Betamethason thường được sử dụng tại chỗ để kiểm soát các tình trạng viêm da có đáp ứng với corticosteroid như viêm da cơ địa hay bệnh vảy nến.

Betamethason thoa tại chỗ thường có sẵn ở dạng kem, gel, thuốc mỡ, kem dưỡng da hoặc dạng xịt. Các công thức Betamethason tại chỗ thường được bào chế với một trong hai loại muối là Betamethasone dipropionat hoặc Betamethason valerat. Hiệu lực của mỗi công thức Betamethason có thể khác nhau tùy thuộc vào loại muối được sử dụng.
Betamethason dipropionat chứa hai este, điều này làm cho thuốc hoà tan trong chất béo tốt hơn và khả năng thẩm thấu vào da tốt hơn. Do đó, Betamethason dipropionat sẽ mạnh hơn Betamethason valerat vì valerat chỉ chứa một este.
Điều chế sản xuất Betamethason dipropionat
Betamethason dipropionat so với các steroid khác sẽ có ưu điểm hoà tan lipid cao và thấm qua da tốt hơn. Betamethason dipropionat được sử dụng rộng rãi cho các bệnh lý da không nhiễm trùng, giúp giảm viêm và ngứa. Tuy nhiên, sản phẩm Betamethason dipropionat có yêu cầu cao về tạp chất, hiệu suất tinh chế thấp trong thời gian dài và một số tạp chất cụ thể khiến thuốc không đáp ứng được các yêu cầu của dược điển tiêu chuẩn cao như của Châu Âu.
Trong đó, sản phẩm Betamethason dipropionat thô được điều chế bằng quy trình truyền thống có hàm lượng tạp chất vượt xa quy định của dược điển Châu Âu. Do vấn đề cấp bách đó, hiện nay lĩnh vực kỹ thuật phát triển ra phương pháp mới để tinh chế Betamethason dipropionat nhằm cải thiện chất lượng sản phẩm và duy trì năng suất cao.

Tinh chế Betamethason dipropionat thô bằng cách sử dụng hỗn hợp dung môi acetone và dung môi hữu cơ ankan. Các tạp chất của Betamethason dipropionat luôn được hoà tan ở mức độ cao hơn trong quá trình tinh chế và sản phẩm Betamethason dipropionat tinh khiết sẽ được tách ra để có thể kiểm soát hiệu quả loại bỏ tạp chất.
Betamethason dipropionat tinh chế được cải thiện từ 97% lên đến hơn 99,5%. Phương pháp cụ thể bao gồm 4 bước sau:
- Bước 1: Thêm acetone vào sản phẩm Betamethason dipropionat thô để thu được dung dịch acetone của Betamethason dipropionat.
- Bước 2: Làm mất màu dung dịch acetone Betamethason dipropionat và lọc để thu được dung dịch acetone Betamethason dipropionat đã mất màu.
- Bước 3: Tiến hành chưng cất giảm áp suất dung dịch acetone Betamethason dipropionat đã khử màu để thu được dung dịch acetone Betamethason dipropionat đậm đặc.
- Bước 4: Nhỏ giọt dung môi hữu cơ ankan vào dung dịch acetone Betamethason dipropionat đậm đặc và thực hiện khuấy, kết tinh, đứng, lọc và sấy khô để thu được sản phẩm tinh chế Betamethason dipropionat.
Cơ chế hoạt động
Glucocorticoid ức chế quá trình apoptosis và phân tách bạch cầu trung tính, đồng thời ức chế NF-Kappa B và các yếu tố phiên mã gây viêm khác. Chúng cũng ức chế phospholipase A2, dẫn đến giảm sự hình thành các dẫn xuất của acid arachidonic. Ngoài ra, glucocorticoid còn thúc đẩy các cytokine chống viêm như interleukin-10.

Corticosteroid như betamethasone có thể hoạt động thông qua các con đường liên quan hoặc không liên quan đến gen. Quá trình liên quan đến gen diễn ra chậm hơn và xảy ra khi glucocorticoid kích hoạt các thụ thể glucocorticoid. Sau đó, bắt đầu các tác động xuôi dòng nhằm thúc đẩy quá trình phiên mã của các gen chống viêm, bao gồm phosphoenolpyruvate carboxykinase (PEPCK), chất đối kháng thụ thể IL-1 và tyrosine amino transferase (TAT).
Mặt khác, con đường không liên quan đến gen có thể tạo ra phản ứng nhanh hơn bằng cách điều chỉnh hoạt động của tế bào T, tiểu cầu và bạch cầu đơn nhân thông qua việc sử dụng các thụ thể gắn màng và chất truyền tin thứ hai.
B-White là gì?
B-White là hợp chất bao gồm nhiều chất hóa học bao gồm: Purifiled water, niacinamide, glycerin, boron nitride, cetearyl alcohol, ceteareth-2, ceteareth 25, glycyrthlza glabra extract, butyrospermum parkii argania spinosa kenerol, persea gratissima oil, glycolic acid, polysorbate 80, allantoin, alpha arbutin...
B-White là một nguyên liệu mỹ phẩm giúp trắng da có khả năng ức chế quá trình tăng sinh hắc sắc tố melanin của tế bào. Từ đó những sản phẩm chứa B-White giúp cải thiện các vùng da bị đen sạm, sẫm màu, làn da kém sắc.
Trong hoạt chất trắng da B-White có chứa hai hoạt chất liên quan sự hình thành sắc tố là arbutin và albatin. Hai chất trên giúp ngăn chặn đồng thời điều chỉnh các hắc sắc tố ở tầng biểu bì của da nên làm sáng, đều màu các vùng da bị đen sạm, tối màu, và dưỡng trắng da.
Nguyên liệu mỹ phẩm, hoạt chất trắng da B-White có khả năng ức chế trung tâm hoạt động MITF - nơi điều khiển ezyme Tyrosinase sản sinh ra sắc tố tối màu melanin để từ đó ngăn chặn các tác nhân gây nám, tàn nhang và sạm da, da tối màu,…
Điều chế sản xuất B-White thế nào?
Nguyên liệu mỹ phẩm trắng B-White này có thể làm được điều nhờ vào công nghệ siêu thẩm thấu Ecogel. Ecogel là công nghệ đã đạt được chứng chỉ Ecocert với ưu điểm nổi bật là làm tăng khả năng thâm nhập và dẫn truyền các hoạt chất này vào sâu trong các tế bào da nhằm nâng cao mức độ hiệu quả của sản phẩm một cách ưu việt, nhanh chóng và rõ rệt.
Cơ chế hoạt động B-White ra sao?
Ta biết rằng sự thâm, sậm, tăng sức tố da liên quan đến một chất có tên gọi melanin hiện diện trên da. Quá trình hình thành chất này được miêu tả cụ thể như sau. Ban đầu enzyme Tyrosinase chuyển Tyrosin thành Melanin. Sự tổng hợp Melanin tạo ra sắc tố da. Và các hạt sắc tố được vận chuyển đến các tế bào sừng dọc theo các tua. Bên trong các tế bào sừng, Melanin lắng đọng thành các chắn bao quanh nhân của tế bào. Tại đây, Melanin được xem như là một chắn hấp thụ và phản chiếu tia UV. Do đó, DNA trong các tế bào da được bảo vệ dưới sự chống tia UV hiệu quả nhất. Từ đó ngăn chặn các tác nhân gây nám da, đen sạm da, da tối màu,…
Ức chế trung tâm hoạt động MITF: MITF được xem như yếu tố gốc rễ của nguyên nhân gây sạm da, đen da.
Ức chế Enzyme Tyrosinase dẫn đến việc giảm sự sinh ra của tế bào Melanosome hay còn gọi là tế bào biểu bì hắc tố.Kéo theo đó là sự giảm sản sinh ra sắc tố tối màu Melanin.

ATP là gì?
Mọi sinh vật sống trên trái Đất đều cần năng lượng để hoạt động cũng như thúc đẩy quá trình trao đổi chất trong cơ thể. ATP là viết tắt của cụm từ Adenosin Triphosphat, chính là nguồn cung cấp năng lượng sinh học chủ yếu này cho cơ thể sinh vật. Nói một cách khác, ATP là phân tử mang năng lượng, chúng có chức năng vận chuyển năng lượng đến nơi mà các tế bào cần sử dụng.
Không ít người lầm tưởng rằng chất dinh dưỡng từ thức ăn chính là năng lượng sống mà chúng ta sử dụng. Thực tế thì sau khi tiêu hóa thức ăn, cơ thể sẽ dự trữ các chất dinh dưỡng dưới dạng carbohydrates (tinh bột), fat (chất béo) hay protein (chất đạm). Các chất này lại được phân giải thành hợp chất đơn giản hơn đó là glucose, acid amin, acid béo và theo đường máu vận chuyển đến các tế bào.

Tuy nhiên, các tế bào không thể trực tiếp lấy năng lượng từ những chất dinh dưỡng này. Chính vì vậy, chúng ta cần có các hệ năng lượng giúp xử lý, biến đổi chúng thành ATP. Các ATP này sẽ dự trữ và cung cấp năng lượng có thể sử dụng được cho các tế bào khi cần. Quá trình này không chỉ ra trong tất cả các loại động vật, thực vật và vi khuẩn (và ngay cả trong virus khi chúng đang di chuyển trong các vật chủ)
Trong tự nhiên, ATP chỉ có thể được tìm thấy trong một số loại thảo dược quý giá “Đông trùng hạ thảo” hay linh chi.
Điều chế và sản xuất
Cấu tạo của một ATP cơ bản bao gồm:
Adenine: Một cấu trúc vòng bao gồm các nguyên tử C, H và N.
Ribose: Một phân tử đường có 5 Carbon.
Phần đuôi với 3 phân tử phosphat vô cơ (Pi). Liên kết giữa 2 Pi cuối cùng chứa rất nhiều năng lượng. Do đó việc phân tách các phần này chính là mấu chốt của quá trình giải phóng năng lượng của ATP.
ATP có thể được tạo ra từ đường đơn và đường phức tạp cũng như từ lipid thông qua phản ứng oxy hóa khử. Để điều này xảy ra, trước tiên carbohydrate phải được phân hủy thành đường đơn, trong khi chất béo phải được chia thành axit béo và glycerol. Tuy nhiên, quá trình sản xuất ATP được điều chỉnh rất cao. Sản xuất của nó được kiểm soát thông qua nồng độ cơ chất, cơ chế phản hồi và cản trở dị ứng.
Cơ chế hoạt động của ATP
Trong môi trường ống nghiệm, khi một phân tử glucose phân tách thành CO2 và nước đồng thời sẽ giải phóng khoảng 686 kcal/mol. Năng lượng này được tỏa ra dưới dạng nhiệt năng và phải sử dụng máy hơi nước thì mới có thể chuyển thành công cơ học. Hiển nhiên điều này là không thể xảy ra trong môi trường tế bào.
Nhờ có các ATP, nguồn năng lượng phân giải này sẽ được cất trữ vào trong đó. Khi tế bào cần năng lượng, ATP sẽ được thủy phân làm gãy liên kết giữa Oxi với nguyên tử photphat cuối cùng. Kết quả quá trình này sẽ tạo ra một phân tử phosphat vô cơ (Pi), một ADP (Adenosin Diphosphat) và khoảng 7 kcal/mol năng lượng. Lúc này, ADP sẽ ngay lập tức được chuyển đổi trở lại thành ATP nhờ có enzyme ATP synthase nằm trong màng ti thể.
Betaine là gì?
Betaine là một amino acid - dẫn xuất của choline được tạo ra khi choline kết hợp với axit amin glycine, với cấu trúc hóa học có chứa 3 nhóm methyl bổ sung. Do vậy, betaine còn được gọi là trimethylglycine.
Betaine có một số chức năng sinh học quan trọng: Với chức năng là một phân tử nhường nhóm methyl, betaine tham gia vào quá trình methyl hóa (quá trình sinh hóa thiết yếu) hỗ trợ chức năng của gan, giải độc và hoạt động của tế bào trong cơ thể.

Tuy nhiên, vai trò quan trọng nhất của betaine là hỗ trợ cơ thể xử lý chất béo. Betaine cũng là một chất chống thẩm thấu thiết yếu chủ yếu ở thận, gan và não. Một lượng lớn betaine có thể tích lũy trong các tế bào mà không làm gián đoạn chức năng của tế bào, giúp bảo vệ các tế bào, protein và enzyme dưới áp lực thẩm thấu.
Trong sản xuất mỹ phẩm, betaine tương thích tốt với da, giúp làm giảm kích ứng gây ra do chất diện hoạt và tạo cảm giác mềm mại khi sử dụng. Theo một nghiên cứu được tiến hành trên 22 tình nguyện viên tại Thái Lan, 100% người tham gia nhận thấy màu da sáng hơn sau khi sử dụng dung dịch betaine 4%.
Điều chế sản xuất Betaine
Vào thế kỷ 19, người ta đã phát hiện ra betaine là một chất tự nhiên có trong củ cải đường (Beta Vulgaris). Trong một số thực phẩm như cám lúa mì, mầm lúa mì, rau bina, vi sinh vật và động vật không xương sống dưới nước, betaine cũng được tìm thấy ở nồng độ cao hơn.

Chúng ta có thể bổ sung betaine thông qua chế độ ăn uống. Ngoài ra, trong cơ thể, betaine được tổng hợp bởi sự kết hợp của choline và axit amin glycine.
Cơ chế hoạt động của Betaine
Betaine hình thành liên kết hydro với nước và những phân tử khác một cách dễ dàng nhờ vào đặc điểm về cấu trúc. Chất này có thể tan trong nước tạo dung dịch 55% bền vững về mặt hóa học.
Nhờ có betaine mà homocysteine trong máu được chuyển đổi thành methione. Điều này rất quan trọng, hàm lượng homocysteine ở mức cao sẽ ảnh hưởng xấu đến mạch máu, từ đó dễ dẫn đến sự phát triển các mảng bám và tình trạng gọi là xơ vữa động mạch (tắc nghẽn động mạch).
Ngoài ra, hàm lượng homocysteine cao cũng là một trong những nguyên nhân chính gây ra bệnh tim, đột quỵ cũng như các bệnh tim mạch khác. Betaine có khả năng hạ thấp homocysteine, tăng cường cơ và sức mạnh của sợi cơ, tăng cường độ chịu đựng và giúp giảm béo.
Stearyl Alcohol là gì?
Stearyl Alcohol (hay octadecyl alcohol hoặc 1-octadecanol) là một chất hữu cơ thuộc nhóm cồn béo.
Stearyl Alcohol được tìm thấy trong dầu dừa, dầu cọ, bơ hạt mỡ, cacao… và thường dùng cho mục đích làm mềm, nhũ hóa và làm đặc trong các sản phẩm chăm sóc da. Stearyl Alcohol tồn tại ở dạng hạt trắng/vảy. Hợp chất này không tan trong nước.

Cơ quan Quản lý Thực phẩm và Dược phẩm Hoa Kỳ (FDA) đã kiểm tra sự an toàn của Stearyl Alcohol và cho phép được sử dụng làm phụ gia đa năng bổ sung trực tiếp vào thực phẩm.
Điều chế sản xuất Stearyl Alcohol
Stearyl Alcohol có nguồn gốc từ axit stearic - một loại axit béo bão hòa tự nhiên. Người ta có thể điều chế Stearyl Alcohol thông qua quá trình hydro hóa với các chất xúc tác.
Isopropyl myristate (còn được gọi là dầu IPM, 1-Methylethyl tetradecanoate, Isopropyl tetradecanoate) là một hợp chất hữu cơ từ Isopropyl Alcohol và Acid Myristic (có nguồn gốc từ thực vật). Đặc tính của Isopropyl myristate là chất lỏng có độ sánh nhẹ, không màu, không tan trong nước nhưng có thể tan trong silicon và các hydrocacbon.
Isopropyl myristate chịu được độ pH rộng và có thể tương thích với hầu hết các chất hoạt động bề mặt, các chất làm sạch. Isopropyl myristate có độ nhớt rất thấp nên rất dễ bôi trơn cũng như dễ thẩm thấu vào da. Nó giúp cho các dưỡng chất trong sản phẩm có thể hấp thụ tốt vào da.

Được đánh giá là chất khá lành tính, Isopropyl myristate không gây ảnh hưởng cho sức khỏe người sử dụng. Tuy nhiên, theo khuyến cáo từ các chuyên gia, nên dùng Isopropyl myristate với tỷ lệ trong khoảng từ 1 – 20% để phát huy tối đa công dụng cũng như không gây ra bất kỳ tác dụng phụ nào, chẳng hạn như tình trạng kích ứng da, da nổi mẩn đỏ, dị ứng, nổi mụn,…
Polyhydroxy axit là gì?
PHA (polyhydroxy acids) là một nhóm hoạt chất tẩy da chết hóa học. Nó tương tự như AHA và BHA, nhưng, PHA lại dịu nhẹ và không gây kích ứng da. PHA còn chống oxy hóa, kích thích tế bào da tái tạo, giảm nếp nhăn một công dụng nữa là giúp da mặt khỏe, săn chắc.
Acid trong nhóm PHA gồm có gluconolactone, galactose và lactobionic, tất cả đều có ưu thế riêng. Điểm chung là kết cấu phân tử lớn hơn so với AHA và BHA. Nó giúp sản phẩm phát huy tác dụng trên bề mặt biểu bì da mà không làm tổn thương các tầng mong manh phía dưới.

PHA là những thành phần lý tưởng để sử dụng trong các thủ thuật da liễu và thẩm mỹ. Khoa học chứng minh nó đem lại nhiều lợi ích cho da. Mức độ thâm nhập vào da chậm hơn nhưng nó lại dịu nhẹ hơn rất nhiều đối với làn da. Ưu điểm này khiến PHA và PHBA phù hợp cho mọi loại da, đặc biệt là da nhạy cảm.
PHA phù hợp với da khô vì PHA mang tính hút ẩm, giúp da thêm căng mọng và tạo môi trường hoàn hảo để phục hồi da. Đối với làn da nhạy cảm bị tổn thương sau mụn, sau kem trộn… dùng PHA rất phù hợp.
Điều chế sản xuất
Poly (axit hydroxys) là một họ polyeste tương hợp sinh học và (sinh học). Nó có thể phân hủy với nhiều kết quả khác nhau trong các lĩnh vực ứng dụng khác nhau, phản ứng trùng hợp mở vòng (ROP) của các este mạch vòng tương ứng là cách điều chế tốt nhất. Sử dụng các monome đối xứng raxemic có các nhóm chuỗi bên cho phép truy cập, cung cấp một hệ thống chất xúc tác/khởi đầu chọn lọc lập thể được thực hiện. Các polyme chức năng lập thể, cải thiện các đặc tính hóa lý và mở rộng phạm vi sử dụng của chúng.
ROP được chọn lọc lập thể qua trung gian kim loại của các este mạch vòng theo hướng tổng hợp poly (axit hydroxy) lập thể (chức năng) mà gần đây đã được tiết lộ. Nhấn mạnh vào (chức năng) β- và γ-lacton, diolide và Omonome -carboxyanhydride (OCA) và xúc tác dựa trên yttrium. Việc tinh chỉnh các nhóm thế nằm trên phối tử xúc tác cho phép đạt được poly (axit hydroxy) với các vi cấu trúc syndiotactic và cũng isotactic. Cơ chế điều khiển âm thanh nổi tại nơi làm việc và nguồn gốc có thể xảy ra của chúng. Dựa trên yếu tố steric nhưng cũng như các yếu tố điện tử được truyền đạt cụ thể bởi các nhóm thế phối tử, được thảo luận. Lợi thế của ROP chọn lọc lập thể như vậy. Các copoly (axit hydroxy) ban đầu với các mẫu gradient hoặc xen kẽ sau đó. Nó có thể truy cập được từ việc sử dụng hỗn hợp các monome đối quang khác nhau, có cấu hình đối lập về mặt hóa học.
Cơ chế hoạt động
Axit hydroxy (HA) đại diện cho một nhóm hợp chất đã được sử dụng rộng rãi trong một số công thức mỹ phẩm. Nó dùng điều trị để đạt được nhiều tác dụng có lợi cho da. Độ an toàn của các công thức này là về tác động của việc sử dụng chúng trong thời gian dài với da tiếp xúc với ánh nắng mặt trời. Dù số lượng các nghiên cứu liên quan đến những thay đổi được tạo ra bằng cách bôi các sản phẩm có chứa HA tại chỗ trong quá trình hình thành ung thư còn hạn chế. Mặc dù số lượng lớn các báo cáo về tác dụng mỹ phẩm và lâm sàng của HA. Cơ chế hoạt động sinh học của chúng vẫn cần được làm rõ hơn.
Những phát hiện quan trọng về tác động của HA đối với sự hình thành hắc tố và đối với sạm da. Do đó, HA đóng một vai trò quan trọng trong các công thức mỹ phẩm, cũng như trong nhiều ứng dụng da liễu. Tác động của HA trong điều trị nám da, mụn trứng cá, bệnh da sần, bệnh rosacea, rối loạn sắc tố và bệnh vẩy nến.
Mica là gì?
Mica trong mỹ phẩm là một loại khoáng chất silicat, được nghiền thành bột có màu sắc óng ánh tự nhiên, đa dạng từ tông màu bạc, trắng đến hồng, tím. Các nhà sản xuất mỹ phẩm thường bổ sung thành phần khoáng mica vào sản phẩm để tạo ra các gam màu sáng, tạo thêm sự lộng lẫy và lấp lánh mà không làm ảnh hưởng đến sức khỏe và làn da, cũng như hiếm khi gây ra tác dụng phụ.

Do đó, khi bạn chọn mua mỹ phẩm nếu nhìn thấy một sản phẩm trông lộng lẫy thì không cần ngạc nhiên vì sản phẩm đó gần như chắc chắn có chứa thành phần mica.
Ngoài mỹ phẩm, bạn cũng tìm thấy thành phần này trong các sản phẩm chăm sóc da với mục đích tạo hiệu ứng phát sáng (làm sáng hoặc chiếu sáng). Đôi khi, mica cũng được sử dụng trong các sản phẩm như kem đánh răng, sơn xe và nhựa.
Điều chế sản xuất
Trước đây, các công ty mỹ phẩm thường sử dụng mica trong tự nhiên trong các thành phần mỹ phẩm. Về sau, họ thay thế mica tự nhiên trong sản phẩm bằng một phiên bản do phòng thí nghiệm sản xuất.
Thành phần mica mới này được tạo ra bằng cách chiết xuất các tinh thể silicat từ khoáng chất sau đó chế biến ở nhiệt độ cao.
Alanine là gì?
Là một axit amin không thiết yếu, thành phần này cơ thể không sử dụng để tổng hợp protein trong cơ bắp. Axit amin này có thể được bổ sung từ nguồn thức ăn hoặc do quá trình sinh tổng hợp bên trong cơ thể tạo ra.
Alanine là một chất bổ sung có hiệu quả cho việc tăng hiệu suất trong tập luyện thể hình, thể thao, giúp tăng sức mạnh, sức bền, giảm cảm giác mệt mỏi… Hoạt chất này nhiều người cần dùng đến, và hoạt chất này quan trọng với vận động viên. Alanine trong các sản phẩm bổ sung có tên gọi là beta-alanine.
Điều chế sản xuất
Alanine được sản xuất thông qua quá trình thủy phân không đối xứng với acylase của vi sinh vật. Alanine vẫn được phân lập từ các chất thủy phân protein ở quy mô công nghiệp; L- alanin có thể được điều chế... bằng cách khử cacbon bằng enzym của axit L-aspartic với một vi sinh vật cố định như Pseudomonas dacunhae.

L-Alanine được sản xuất công nghiệp từ axit l-aspartic bằng cách cố định các tế bào Pseudomonas dacunhae trong một lò phản ứng sinh học có áp suất. Trong quá trình lên men trực tiếp, vi sinh vật thường tích lũy d, l-alanin vì có alanin racemase. Với một thể đột biến kháng d-cycloserine được chọn từ Brevibacterium lactofermentum, có thể thu được 46g/L d-alanin với lượng dư đối quang (ee) là 95%. Một đột biến thiếu alanin racemase của Arthrobacter oxydans đã được báo cáo, tạo ra 75g/L l-alanin từ glucose với hiệu suất 52% và 95% ee. Ở một mức độ nhất định, l-alanin vẫn được phân lập từ các chất thủy phân protein.
Cơ chế hoạt động
Alanine xuất hiện với hàm lượng cao ở trạng thái tự do trong huyết tương và được tạo ra từ pyruvate bằng cách chuyển hóa. Quá trình chuyển hóa đường và axit của alanine giúp tăng khả năng miễn dịch, cung cấp năng lượng cho não, hệ thần kinh trung ương và mô cơ.
Branched-Chain Amino Acid (BCAAs) là Leucine, iso-leucine và valine được sử dụng như một nguồn năng lượng cho các tế bào cơ. Trong quá trình tập thể dục kéo dài, BCAAs được giải phóng khỏi cơ xương và xương sống carbon của chúng được sử dụng làm nhiên liệu. Phần nitơ được sử dụng để tạo thành một axit amin khác. Gan là cơ quan chuyển hóa Alanin thành Glucose. Hình thức sản xuất năng lượng này được gọi là Alanine- Glucose và nó đóng một vai trò quan trọng trong việc duy trì sự cân bằng lượng đường trong máu của cơ thể.
L-Threonine là gì?
L-Threonin là một α-amino axit có công thức hóa học HO₂CCHCHCH₃, đồng thời cũng là một axit amin thiết yếu có phân cực. Threonin là một trong hai axit amin sinh protein mang một nhóm ancol, giống như serin, là một trong hai axit amin thiết yếu có nhánh bên đối xứng.
L-Threonine là một axit amin thiết yếu nhưng axit amin này có thể sử dụng để tạo ra protein. Các axit amin thiết yếu phải được lấy từ thực phẩm thông qua chế độ ăn uống, cơ thể không thể tự tạo ra được.

L-threonine được mọi người sử dụng khi bị rối loạn kiểm soát cơ bắp, độ căng cơ, yếu và cứng cơ ở chân, bệnh xơ cứng teo cơ bên hoặc ALS (Lou Gehrig). Còn một số hạn chế là các bằng chứng khoa học về những công dụng này vẫn chưa được khẳng định chắc chắn.
Điều chế sản xuất L-Threonine
Các nhà sản xuất axit amin thường được phát triển bằng cách gây đột biến ngẫu nhiên, lặp đi lặp lại do khó khăn trong việc thiết kế hợp lý mạng lưới trao đổi chất phức tạp và được điều chỉnh cao. Ở đây, chúng tôi báo cáo sự phát triển của chủng Escherichia coli sản sinh quá mức L -threonine đã được xác định về mặt di truyền bằng kỹ thuật chuyển hóa hệ thống. Sự ức chế phản hồi của aspartokinase I và III (được mã hóa bởi thrA và lysC, tương ứng) và các quy định về suy giảm phiên mã (nằm trong thrL) đã bị loại bỏ.
Các con đường cho sự suy thoái Thr đã bị loại bỏ bằng cách xóa tdh và làm biến đổi ilvA. Các meta và Lysagen đã bị xóa để tạo ra nhiều tiền chất hơn cho quá trình sinh tổng hợp Thr. Các gen mục tiêu khác sẽ được thiết kế đã được xác định bằng cách lập hồ sơ phiên mã kết hợp với phân tích phản ứng thông lượng silico, và mức độ biểu hiện của chúng được điều chỉnh theo đó.
Chủng E. coli được biến đổi gen cuối cùng có thể tạo ra Thr với năng suất cao là 0,393g mỗi gam glucoza, và 82,4g/l Thr bằng cách nuôi cấy theo mẻ. Chiến lược kỹ thuật chuyển hóa hệ thống được báo cáo ở đây có thể được sử dụng rộng rãi để phát triển các sinh vật được xác định về mặt di truyền nhằm sản xuất hiệu quả các sản phẩm sinh học khác nhau.
Cơ chế hoạt động của L-Threonine
L-Threonine khi vào cơ thể, được cơ thể biến đổi thành một hóa chất gọi là glycine. Hoạt chất glycine hoạt động trong não, để điều tiết sự co thắt cơ bắp không mong muốn.
Ascorbyl Glucoside là gì?
Ascorbyl Glucoside (vitamin C gốc đường) là một dẫn xuất của vitamin C. Ascorbyl Glucoside có độ pH từ 5-7. Khác với tác dụng trực tiếp khi lên da của các gốc C khác như LAA, EAA, MAP, SAP… Ascorbyl Glucoside sau khi lên da sẽ trải qua một quá trình hấp thụ và chuyển đổi thì mới mang lại những hiệu quả rõ rệt cho da.

Cụ thể, sau khi Ascorbyl Glucoside được hấp thụ vào da, một loại Enzyme được gọi là Alpha-Glucosidas sẽ phân hủy nó thành LAA (L – Ascorbic Acid). Quá trình này sẽ giúp da nhận được những hiệu quả của vitamin C như làm sáng da, chống oxy hóa, mờ thâm, làm mờ nếp nhăn... Và đồng thời hạn chế được tối đa các khả năng kích ứng so với khi bôi trực tiếp gốc L-AA lên da.
Người dùng sử dụng vitamin C gốc LAA thường hay gặp phải tình trạng khó hấp thụ, vitamin C bị oxy hóa ngay trên bề mặt da và khiến da bị vàng sạm. Những ai gặp trường hợp này khi sử dụng LAA thì có thể tham khảo sang gốc Ascorbyl Glucoside (Vitamin C gốc đường). Vì gốc này ổn định với ánh sáng hơn rất nhiều, cũng như độ hấp thụ và thẩm thấu tốt hơn hẳn.
Vì phải trải qua một giai đoạn chuyển hóa nên nhìn chung Ascorbyl Glucoside sẽ có hiệu quả chậm hơn so với vitamin C gốc LAA. Tuy nhiên, đây sẽ là một giải pháp an toàn, dài lâu, và cũng như đảm bảo sản phẩm đang dùng không bị oxy hóa giữa chừng. Thêm một điểm nhỏ nữa thì bảo quản Vitamin C gốc LAA khó cực kỳ, bạn phải để tránh ánh sáng trực tiếp, thường xuyên kiểm tra màu sản phẩm, nếu nó bị vàng ngà đi thì tinh chất đã bị oxy hóa và không thể sử dụng được nữa. Vitamin C gốc LAA tốt nhất nên được bảo quản ở tủ lạnh. Ngược lại, các sản phẩm chứa Ascorbyl Glucoside thì chỉ cần để ở nhiệt độ phòng và không cần lo ngại đến khả năng sản phẩm bị oxy hóa.
Vì sẽ chuyển hóa thành LAA sau khi lên da nên Ascorbyl vẫn duy trì những hiệu quả tốt của vitamin C đối với da. Nổi bật là các hiệu quả như chống oxy hóa, làm sáng da, giảm thâm, tăng độ đàn hồi, thúc đẩy hình thành và tái tạo Collagen trên da. Ưu điểm lớn của Ascorbyl Glucoside là thẩm thấu tốt, ít gây kích ứng trên da và hầu như sản phẩm không bị oxy hóa ngay cả khi bảo quản ở môi trường nhiệt độ phòng.
Điều chế sản xuất Ascorbyl Glucoside
Sản xuất công nghiệp của Ascorbyl Glucoside chủ yếu bao gồm việc chuẩn bị, tinh chế, kết tinh của ba quy trình chính.
Hiện nay, quá trình chuyển đổi sinh học là cách duy nhất để tổng hợp glucoside ascorbic acid, tức là sử dụng glucoside trên glucosyl donor được chuyển đến vị trí C 2 của vitamin C bằng cách sử dụng transglycosylation cụ thể của glycosyltransferase.
Trong phản ứng này, các độ dài khác nhau của các nhóm glucosyl có thể được gắn với vị trí C 2 của vitamin C để sản xuất một hỗn hợp AA-2Gn (n = 1,2,3,4,5-C có thể chuyển thành Ascorbyl Glucoside bằng cách bổ sung một glucoamylase để giảm mức độ trùng hợp.

Ngoài ra, các đồng phân AA-5G, AA-6G và các AA-2G khác có xu hướng hình thành trong phản ứng glycosyltransferase, và các nhà tài trợ vitamin C và glucose vẫn tồn tại sau phản ứng, do đó phản ứng glycosyl hóa hoàn thành, dung dịch phản ứng được tách ra và tinh chế, và cuối cùng là phương pháp tinh thể để có được độ tinh khiết cao ascorbyl glucoside sản phẩm.
Cơ chế hoạt động của Ascorbyl Glucoside
Ascorbyl Glucoside có cấu trúc bao gồm một nhóm của L-ascorbic Acid và Glucose. Khi thẩm thấu qua da, thành phần này sẽ được enzyme alphe-glucosidase phân chia thành L-ascosbic Acid và Glucose tách biệt.
Khi đó, thành phần này cũng sẽ sở hữu chức năng tương tự như L-ascorbic acid thông thường, có khả năng hoạt động như một coenzyme kích thích quá trình tổng hợp Collagen của da.
Sản phẩm liên quan











