Potassium Stearate
Phân loại:
Thành phần khác
Mô tả:
Potassium stearate là gì?
Tên thường gọi: Potassium stearate.
PubChem CID: 23673840.
Tên gọi khác: Potassium octadecanoate; Rashayan potassium stearate; Octadecanoic acid, potassium salt; Steadan 300.
Potassium stearate được cấu thành từ muối và este của 18 cacbon no và acid đơn chức - axit stearic. Potassium stearate có công thức hóa học là C18H35KO2, trọng lượng phân tử là 322.6 g/mol.
Về tính chất, ở dạng ban đầu Potassium Stearate là một dạng bột mịn, màu trắng, có mùi béo.
-
Độ pH: 10 đến 11, dung dịch nước của nó có tính kiềm mạnh đối với quỳ tím hoặc phenolphtalein và dung dịch etanol của nó có tính kiềm yếu.
-
Độ ẩm: <6%.
-
Điểm sôi: 359 độ C đến 360 độ C.
-
Độ hòa tan: Hòa tan trong nước nóng, không hòa tan trong ete, chloroform và carbon disulfide.
Potassium stearate ứng dụng phổ biến trong nhiều loại mỹ phẩm chăm sóc da, chăm sóc tóc cũng như là thành phần phụ gia thực phẩm. Ngoài ra Potassium stearate còn được ứng dụng trong chất làm mềm dệt hay sản xuất cao su.
Điều chế sản xuất Potassium stearate
Potassium Stearate, là một muối kali của axit stearic được sản xuất thông qua quá trình tổng hợp hóa học từ Kali hydroxit và axit stearic, có sẵn dưới dạng bột mịn màu trắng.
Potassium stearate có nguồn gốc từ axit stearic, một sản phẩm phụ của quá trình xà phòng hóa dầu thực vật.
Axit stearic được tạo ra bởi các loại dầu và thể hiện các tính chất của axit béo. Axit stearic được tạo ra từ phản ứng xà phòng hóa chất béo trung tính bằng cách đun nóng dung dịch ở nhiệt độ 100 độ C. Sau đó, dung dịch tiếp theo được chưng cất. Axit stearic thường có sẵn là một axit hỗn hợp, tức là hỗn hợp của axit stearic và axit palmitic. Axit stearic xuất hiện tự nhiên trong dầu mỡ động vật và trong một số loại dầu thực vật.
Cơ chế hoạt động
Potassium Stearate là một chất nhũ hóa: Nó ngăn không cho phần dầu và chất lỏng của công thức phân tách. Nó cũng có thể làm tăng độ dày phần dầu của các sản phẩm mỹ phẩm.
Potassium stearate được sử dụng làm chất tẩy rửa tóc, mặt, cơ thể và như một chất đồng chuyển thể trong các sản phẩm chăm sóc da, mỹ phẩm và tạo kiểu tóc. Đồng thời, nó có tác dụng làm sạch tốt, có thể làm cho làn da tươi mới và sạch sẽ.
Potassium stearate được sử dụng chủ yếu trong mỹ phẩm và các sản phẩm chăm sóc da như một chất hoạt động bề mặt, chất làm sạch và chất nhũ hóa. Hệ số rủi ro là 1, tương đối an toàn và có thể được sử dụng một cách tự tin. Nói chung, nó không có ảnh hưởng đến phụ nữ mang thai. Potassium stearate không gây mụn.
Potassium stearat chủ yếu được sử dụng làm chất làm sạch và chất nhũ hóa. Nó có thể được sử dụng trong nhiều ứng dụng chăm sóc cá nhân và mỹ phẩm. Nó cũng được sử dụng trong sản xuất cao su và làm cơ sở cho chất làm mềm dệt.
Dược động học:
Dược lực học:
Xem thêm
Inulin là gì?
Inulin mà loại chất xơ có tên là fructan, được tìm thấy trong một số thực vật (chủ yếu trong rễ hoặc thân rễ) với tác dụng chính nhằm tích trữ năng lượng. Thực phẩm tổng hợp và thực phẩm chứa inulin phần lớn đều không có carbohydrate khác như tinh bột.
Inulin có đặc tính tan được trong nước, gần như không màu và không mùi, mang lại tác dụng giảm táo bón, giúp hệ tiêu hóa khỏe mạnh, từ đó cũng giúp ngăn ngừa ung thư đại tràng và trực tràng. Ngoài ra, inulin cũng rất tốt đối với sức khỏe tim mạch.
Những thực phẩm chứa inulin có rất nhiều, bao gồm hành tím, măng tây, lúa mì, chuối, sữa bột,... Chúng ta có hai cách để bổ sung inulin hàng ngày: Sử dụng thực phẩm giàu inulin hoặc sử dụng thực phẩm chức năng có chứa inulin (bột inulin, prebiotic inulin, ngũ cốc hay thực phẩm chế biến sẵn có chứa inulin, viên nén inulin,...).
Do inulin không bị tiêu hóa bởi các enzym trong cơ thể nên chất xơ này cơ bản sẽ không có calorie. Quá trình inulin đi qua hệ tiêu hóa nhưng không bị phá vỡ hoàn toàn sẽ giúp nuôi dưỡng các vi khuẩn tốt trong ruột (probiotics). Nhờ đó, inulin giúp tạo nên hệ vi sinh vật có lợi tồn tại và phát triển.
Nhờ đặc tính bôi trơn, hấp thụ nước và chống oxy hóa của mình mà inulin được dùng khá phổ biến trong sản xuất thực phẩm, giúp sản phẩm có kết cấu đồng nhất và dẻo dai hơn. Mặt khác, inulin cũng xuất hiện trong nhiều loại thực phẩm đóng gói với vai trò thay thế đường, chất béo và bột mì, thích hợp cho những người ăn kiêng.
Điều chế sản xuất inulin
Inulin được chiết xuất từ cây diếp xoăn. Loại thực vật này được nuôi trồng theo tiêu chuẩn rau hữu cơ, nguồn gốc tự nhiên, không qua biến đổi gen.
Quá trình chiết xuất: Ngâm gốc cây diếp xoăn tươi/khô trong dung môi, thu lấy dịch chiết. Tiếp đó, người ta sẽ dùng máy, tinh chế và sấy khô để tách inulin.
Cơ chế hoạt động
Inulin tan được trong nước nên có thể cung cấp chất dinh dưỡng cho hệ sinh vật ở đường ruột (các vi sinh vật hữu ích ở trong ruột non và ruột già). Khi cơ thể hấp thụ, toàn bộ lượng Inulin được di chuyển xuống ruột và thực hiện nhiệm vụ của mình:
-
Là thức ăn của vi khuẩn ở ruột, nhờ đó vi khuẩn sẽ lớn lên và phân chia để làm công việc phân hủy chất thải, làm mềm phân, tăng khả năng hoạt động của ruột. Điều này giúp chúng ta không bị phải tình trạng táo bón.
-
Góp mặt trong quá trình loại bỏ gốc tự do/chất có hại trong thức ăn ra khỏi cơ thể. Mặt khác, inulin còn có vai trò ức chế vi khuẩn có hại trong ruột già như E.coli, Clostridia, Veillonellae, Candida phát triển. Chính vì thế, inulin sẽ ngăn ngừa vấn đề nhiễm trùng đường tiêu hóa, tái sinh các vi nhung mao trong lòng ruột và cân bằng vi khuẩn đường ruột.
-
Thúc đẩy ruột già hoạt động, tăng tần suất bài tiết, giúp làm mềm phân nên sẽ dễ thải hơn, cải thiện và phục hồi hệ tiêu hóa.
-
Giúp cơ thể hấp thu muối khoáng (canxi, magiê), hỗ trợ cơ thể tổng hợp các vitamin B, hạn chế còi xương.
Hydrogenated vegetable oil là gì?
Hydrogenated vegetable oil là dầu thực vật hydro hóa, là thuật ngữ chỉ các loại dầu đã trải qua một quá trình hóa học được gọi là “quá trình hydro hóa”. Nói một cách đơn giản, khi dầu được hydro hóa, nó có các nguyên tử hydro được thêm vào. Dầu thực vật hydro hóa là thành phần chính của chất béo bão hòa.
Các nhà sản xuất thực phẩm phát hiện ra rằng việc thêm các nguyên tử hydro vào dầu có thể nâng cao thời hạn sử dụng, tăng nhiệt độ nóng chảy và thay đổi kết cấu của dầu. Đó là lý do mà bắt đầu từ đầu những năm 1900, quá trình hydro hóa đã trở thành một công cụ tiết kiệm tiền cho ngành công nghiệp thực phẩm.
Thay đổi mức độ bão hòa của chất béo làm thay đổi một số tính chất vật lý quan trọng, chẳng hạn như phạm vi nóng chảy, đó là lý do tại sao dầu lỏng trở thành bán rắn. Chất béo rắn hoặc bán rắn được ưa thích để nướng vì cách chất béo trộn với bột mì tạo ra kết cấu mong muốn hơn trong sản phẩm nướng. Bởi vì dầu thực vật hydro hóa một phần rẻ hơn mỡ động vật, chúng có sẵn ở nhiều dạng nhất quán và có các đặc tính mong muốn khác (chẳng hạn như tăng độ ổn định oxy hóa và thời hạn sử dụng lâu hơn).
Dầu thực vật hydro hóa có hai dạng: Dạng hydro hóa hoàn toàn (full hydrogenation) và dạng hydro hóa một phần (partial hydrogenation). Trong đó dạng hydro hóa hoàn toàn đúng bản chất không gây hại cho sức khỏe, dạng hydro hóa một phần trong quá trình phản ứng sẽ sinh ra những sản phẩm có thể gọi là “biến dạng” - đây mới là dạng chất béo chuyển hóa gây hại.
Điều chế sản xuất Hydrogenated vegetable oil
Hydro hóa chất béo là quá trình kết hợp chất béo điển hình là dầu thực vật với hydro, hay là quá trình chuyển từ axit béo không bão hòa sang axit béo bão hòa, để làm cho chất béo bão hòa hơn, tạo ra chất béo rắn hoặc bán rắn, chẳng hạn như chất béo có trong bơ thực vật.
Quá trình này thường được thực hiện ở áp suất rất cao, với sự trợ giúp của chất xúc tác niken (niken sẽ được loại bỏ khỏi sản phẩm cuối cùng).
Cơ chế hoạt động
Với quá trình hydro hóa, dầu thực vật lỏng chuyển thành chất béo bán rắn hoặc rắn. Theo FDA, các nhà sản xuất sử dụng dầu hydro hóa để cải thiện kết cấu, độ ổn định hương vị và thời hạn sử dụng của thực phẩm đóng gói. Dầu hydro hóa một phần có chứa các axit béo chuyển hóa.
Những chất béo chuyển hóa này làm đảo lộn sự cân bằng giữa mức cholesterol tốt và xấu trong cơ thể bạn, bằng cách làm tăng mức độ xấu và giảm mức độ tốt. Tỷ lệ này có liên quan đến vô số các bệnh về lối sống, bao gồm bệnh tim, đột quỵ và tiểu đường hay đái tháo đường loại 2.
Hydroxyethyl Acrylate là gì?
Hydroxyethyl Acrylate là chất hữu cơ dạng lỏng, trong suốt, có tỉ trọng nhẹ hơn nước và thể khí của Hydroxyethyl Acrylate có tỉ trọng nặng hơn không khí. Hydroxyethyl Acrylate có tính ăn mòn cao, có thể tự trùng hợp tỏa nhiệt khi tiếp xúc với nguồn nhiệt hoặc bị nhiễm tạp chất. Hydroxyethyl Acrylate được sử dụng nhiều trong ngành công nghiệp polymer hóa dẻo.
Đặc tính lý hóa:
-
Dạng: Lỏng, không màu.
-
Khối lượng phân tử: 116.11 g/mol.
-
Nhiệt độ sôi: 191 °C.
-
Nhiệt độ nóng chảy: - 60.2 °C.

Công thức hóa học của Hydroxyethyl Acrylate
Điều chế sản xuất Hydroxyethyl Acrylate
Hydroxyetyl acrylat có thể được điều chế bằng quá trình tổng hợp copolyme khối lưỡng tính bằng phản ứng trùng hợp qua trung gian nitroxit. Ngoài ra, nó có thể được sử dụng để điều chế poly đã điều chỉnh (hydroxyetyl acrylat) bằng cách trùng hợp gốc chuyển nguyên tử.
Cơ chế hoạt động
Hydroxyethyl Acrylate xuất hiện là dạng chất lỏng trong suốt không màu, ít đặc hơn nước, hơi nặng hơn không khí. Ăn mòn mô, có thể trùng hợp tỏa nhiệt nếu bị nung nóng hoặc bị nhiễm bẩn. Nếu quá trình trùng hợp diễn ra bên trong vật chứa, vật chứa có thể bị vỡ dữ dội, dùng để làm chất dẻo.
Gelatin là gì?
Gelatin là một loại protein không mùi, không vị, có màu trong suốt hoặc hơi vàng. Đây là sản phẩm được tạo ra từ chất collagen chiết xuất ở phía dưới da, xương của động vật như da lợn hoặc trong collagen của thực vật (tảo đỏ, trái cây,...).
Gelatin có 2 dạng: Dạng bột và dạng lá. Bột hay lá gelatin đều có tác dụng làm dày, ổn định cấu trúc và tránh được hiện tượng tách lỏng sản phẩm khi chế biến món ăn.
Độ tan
Gelatin có khả năng tan trong glycerin, dung dịch kiềm và acid loãng, kết tủa trong môi trường acid hoặc kiềm đặc; thực tế không hòa tan trong aceton, cloroform, ethanol 95%, ether và methanol.
Gelatin có khả năng trương nở tốt trong nước, hấp thu lượng nước gấp 5 - 10 lần khối lượng của nó. Gelatin có thể tan trong nước ở nhiệt độ trên 40°C tạo thành một dung dịch keo và tạo gel khi làm mát ở 35 - 37°C. Hệ thống gel-sol này là một hệ thixotropic và thuận nghịch nhiệt.
Độ nhớt
Tùy thuộc vào nguồn nguyên liệu điều chế, về tỷ lệ các thành phần trong gelatin, cách điều chế mà độ nhớt của các chế phẩm khác nhau có thể khác nhau. Do đó mà gelatin có thể ứng dụng trong nhiều dạng thuốc với nhiều vai trò khác nhau như thành phần vỏ nang, chất kết dính trong viên nén, tá dược trong thuốc mỡ, thuốc đặt,…
Điều chế sản xuất gelatine
Gelatin được sản xuất từ rất nhiều nguồn nguyên liệu như xương động vật đã được khử khoáng, da lợn, da cá, da bò,… Quy trình sản xuất như sau:
Xử lý nguyên liệu thô
-
Đối với xương: Tiến hành tách bỏ canxi và các loại muối khoáng bằng cách sử dụng nước nóng hoặc một số loại dung dịch có khả năng hòa tan muối khoáng.
-
Với nguyên liệu là da của trâu, lợn, bò: Làm sạch lông, cắt nhỏ, rửa sạch,… để chuẩn bị cho quá trình chiết.
Xử lý da trước khi chiết có thể thực hiện theo 2 cách sau:
Cách 1: Quy trình axit
-
Quy trình này sử dụng nguồn nguyên liệu chủ yếu là da lợn và da cá, thỉnh thoảng sẽ dùng xương động vật.
-
Cơ sở của phương pháp này là collagen được axit hoá tới pH = 4 trong môi trường axit loãng từ 18 - 24 giờ, tuỳ vào kích thước và độ dày của nguyên liệu. Sau đó, rửa lại với nước đến khi trung hòa. Kết thúc quá trình ta được gelatin loại A.
Cách 2: Quy trình kiềm
-
Quy trình này sử dụng nguồn nguyên liệu chủ yếu là các loại da bò, trâu,…
-
Ngâm da trong dung dịch nước vôi 1-2% có thiết bị khuấy trộn gián đoạn. Sau đó rửa với nước sạch, ngâm axit và xử lý với nước nóng.
-
Cho nguyên liệu thô vào nồi, đun trong nước nóng 55-100ºC từ 3-5 lần. Mỗi từ 4–8h. Có thể thêm vào than hoạt tính để loại màu của dịch chiết.
-
Thổi không khí nóng hoặc sấy phun để làm khô. Sau đó nghiền, trộn theo yêu cầu sử dụng và đóng gói sản phẩm.
-
Sản phẩm tạo thành từ quy trình kiềm sẽ là gelatin loại B.
Cơ chế hoạt động của gelatine
Gelatin khi chìm trong chất lỏng sẽ hút ẩm và nở ra. Khi chất lỏng được làm ấm lên, các hạt trương nở tan chảy, tạo thành sol (keo chất lỏng) với chất lỏng làm tăng độ nhớt và đông đặc lại tạo thành gel khi nó nguội đi.
Trạng thái gel có thể đảo ngược sang trạng thái sol ở nhiệt độ cao hơn và sol có thể chuyển trở lại dạng gel bằng cách làm lạnh. Thời gian đông kết và độ mềm của gelatin đều bị ảnh hưởng bởi nồng độ protein, đường và nhiệt độ.
Coenzyme Q10 là gì?
Coenzyme Q10 (CoQ10) là một chất tự nhiên trong cơ thể và cũng có trong nhiều loại thực phẩm hằng ngày. CoQ10 đóng vai trò quan trọng trong quá trình trao đổi chất. Nó là một phân tử kỵ nước cao, hòa tan trong chất béo, hoạt động như một chất mang điện tử trong ty thể và là một coenzym cho các enzym của ty thể. Coenzyme Q10 cũng có thể có vai trò ngăn chặn việc tiêu thụ các chất chuyển hóa cần thiết cho quá trình tổng hợp adenosine-5'-triphosphate (ATP).

Điều chế sản xuất Coenzyme Q10
Coenzyme Q10 là một phân tử kỵ nước cao, được biết đến từ năm 1957 khi nó được Giáo sư Frederick Crane tại Đại học Madison phân lập từ ty thể của tim. CoQ có mặt trong hầu hết các sinh vật hiếu khí, tất cả các cơ quan của động vật và thực vật. Nó được sản xuất nội sinh trong mọi tế bào và sự tổng hợp nội bào là nguồn chính của nó, mặc dù một tỷ lệ nhỏ được hấp thu từ thức ăn. Thịt, cá, các loại hạt và một số loại dầu là nguồn thực phẩm giàu CoQ10 nhất, trong khi hàm lượng thấp hơn có thể được tìm thấy trong hầu hết các sản phẩm từ sữa, rau, trái cây và ngũ cốc.
CoQ10 bao gồm một vòng benzoquinone và một đuôi lipid polyisoprenoid chứa độ dài chuỗi khác nhau tùy thuộc vào loài. Tóm lại, vòng benzoquinone có nguồn gốc từ axit amin thiết yếu phenylalanine, được chuyển hóa thành tyrosine và sau đó là 4-hydroxybenzoate. Các tiểu đơn vị đuôi polyisoprenoid lipid được tạo ra từ acetyl-CoA (và thông qua chất trung gian chung của cholesterol - farnesyl-pyrophosphate) bằng con đường mevalonate. Giai đoạn cuối cùng của quá trình sinh tổng hợp CoQ là sự ngưng tụ của vòng benzoquinone và đuôi polyisoprenoid. Rất nhiều kiến thức về sinh tổng hợp CoQ bắt nguồn từ các thí nghiệm trên các sinh vật đơn giản như nấm men Saccharomyces cerevisiae vừa chớm nở, nấm men phân hạch Schizosaccharomyces plombe hoặc vi khuẩn coliform Escherichia coli,…

Cơ chế hoạt động
Coenzyme 10 hoạt động như một chất vận chuyển proton và electron di động từ phức hợp I (NADH: ubiquinone reductase) và phức hợp II (succinate: ubiquinone reductase) đến phức hợp III (ubiquinone cytochrome c oxidase) ở màng trong ty thể. Sự phân bố dưới tế bào cho thấy màng trong ty thể có phần CoQ10 lớn nhất. So với các chất mang hô hấp khác, hàm lượng CoQ cao hơn các thành phần oxy hóa khử khác khoảng 10 lần. Hơn nữa, CoQ10 chấp nhận các điện tử từ các dehydrogenase khác, hiện diện với lượng thấp hơn và dường như bị giới hạn tốc độ trong quá trình chuyển điện tử tích hợp.
Chúng khu trú trên bề mặt ngoài của màng trong có glycerol-3-phosphate dehydrogenase liên kết với ty thể - nhánh đơn giản nhất của chuỗi hô hấp và là một phần của con thoi glycerol-3-phosphate. CoQ10 cũng là một đồng yếu tố bắt buộc đối với dihydroorotate dehydrogenase được liên kết với FMN - một loại enzyme chủ chốt của quá trình sinh tổng hợp pyrimidine de novo, liên kết lỏng lẻo với bề mặt ngoài của màng trong.
Ở màng trong, có flavoprotein dehydrogenase vận chuyển điện tử tạo thành một con đường ngắn chuyển điện tử từ 11 flavoprotein dehydrogenase khác nhau của ty thể đến nhóm quinone - một loại enzyme thiết yếu liên quan đến quá trình oxy hóa axit béo và chuỗi nhánh oxy hóa axit amin. Ngoài ra còn có proline dehydrogenase phụ thuộc vào FAD (một loại enzyme cần thiết cho quá trình chuyển hóa proline và arginine) và sulphide-quinone oxidoreductase.

C12-16 Alcohols là gì?
Danh pháp IUPAC: Tetradecan-1-ol.
PubChem: 8209.
Tên gọi khác: Alcohols, C12-16; Myristyl alcohol; Alcohols, C10-16; Alcohol, C12-15; Fatty alcohol(C14)…
C12-16 Alcohols còn được gọi là lauryl-myristyl alcohols là hỗn hợp của rượu béo với 12 đến 16 nguyên tử cacbon trong chuỗi alkyl. C12-16 Alcohols được xếp vào nhóm cồn béo.
Chúng ta cùng tìm hiểu về cồn béo:
-
Cồn béo còn được gọi là cồn tốt vì chúng thực sự tốt cho da. Các loại cồn này thường được sử dụng trong các loại kem cũng như kem dưỡng ẩm vì chúng có đặc tính làm dày da cũng như dưỡng ẩm. Hơn nữa, những loại cồn này thực sự rất tốt để kết hợp nước và dầu để tạo nhũ tương.
-
Những loại rượu này thường được chiết xuất từ cọ, dừa và các loại dầu tự nhiên khác chứa nhiều axit béo thiết yếu. Một lưu ý là mặc dù những loại cồn này rất lý tưởng cho da, chúng vẫn có thể gây kích ứng cho những người có làn da nhạy cảm. Nếu bạn có xu hướng nổi mụn ngay cả khi bạn đang sử dụng những loại cồn này, tốt hơn hết là bạn nên tìm kiếm các sản phẩm chăm sóc da hoàn toàn không chứa cồn.
C12-16 Alcohols ethoxyl hóa bền đến 50 độ C. Nó bị oxy hóa khi tiếp xúc với không khí để tạo thành peroxide và peracids. Dễ cháy nhưng không bắt lửa (điểm chớp cháy > 179 độ C). Nhiệt độ tự bốc cháy khoảng 230 độ C. Có thể phản ứng với chất oxy hóa mạnh, axit mạnh và bazơ mạnh. Không tương thích với đồng và hợp kim đồng và nhôm.
C12-16 Alcohols là một chất lỏng không màu, có mùi nhẹ và bị phân hủy ở nhiệt độ cao.
Các C12-16 Alcohols hoạt động như một chất ổn định nhũ tương và chất tăng độ nhớt, cho phép mọi thứ luôn dễ dàn trải và có màu kem. Nó có thể được tìm thấy trong son môi, kem chống nắng, kem dưỡng ẩm và các sản phẩm khác.
Điều chế sản xuất C12-16 Alcohols
C12-16 Alcohols là một hỗn hợp các rượu polyether có công thức R-O-(CH2CH2-O-)n-H trong đó R là nhóm ankyl từ C-12 đến C-16 và n bằng 1 đến 6. Được tổng hợp bằng cách xử lý hỗn hợp rượu từ C-12 đến C-16 với etylen oxit.
Đây là quy trình điều chế cồn béo nói chung:
-
Quy trình điều chế rượu béo polyethoxylates rượu béo có độ dài chuỗi polyethoxylate phân bố hẹp, trong đó rượu béo chứa từ khoảng 8 đến 18 nguyên tử cacbon được phản ứng với etylen oxit theo tỷ lệ giữa etylen oxit và rượu béo từ 1 đến khoảng 20 lần nhiệt độ giữa nhiệt độ phòng và 200 độ C
-
Với sự có mặt của chất xúc tác kim loại kiềm hoặc kim loại kiềm hyđrua, kim loại kiềm có mặt theo tỷ lệ mol của chất xúc tác đối với rượu béo nằm trong khoảng từ 0.9 đến khoảng 1.5, trong đó etylen oxit được thêm vào hỗn hợp rượu béo và chất xúc tác sau khi thêm chất xúc tác và trước khi tạo thành alkoxide rượu béo hoàn toàn khoảng 75%.
Cơ chế hoạt động
C12-16 Alcohols hay lauryl-myristyl alcohol được sử dụng làm chất hoạt động bề mặt và Este. Ứng dụng chính là trong sản xuất chất trung gian hóa học và chất hoạt động bề mặt. Nó cũng được sử dụng trong dầu nhờn và mỡ bôi trơn. Ngoài ra nó được sử dụng làm chất làm mềm, chất nhũ hóa và chất điều chỉnh độ nhớt trong mỹ phẩm và các sản phẩm chăm sóc cá nhân.
Với tính chất ổn định tạo bọt tự nhiên, C12-16 Alcohols có khả năng tăng cường làm sạch và với khả năng từ cồn là chất kích thích làm tăng thêm tính hữu dụng của chúng như một chất tẩy rửa hoặc xà phòng.
Acid formic là gì?
Acid formic là dạng hợp chất acid hữu cơ đơn giản nhất trong nhóm Cacboxylic với công thức là HCOOH hoặc CH2O2. Thành phần này là một sản phẩm trung gian trong tổng hợp hóa học và cũng xuất hiện trong tự nhiên. Phần lớn hợp chất này có trong nọc độc và vòi đốt của nhiều loại côn trùng thuộc bộ cánh màng như con ong, con kiến, chủ yếu là các loài kiến.
Acid fomic còn có những tên gọi khác nhau như Acid metanoic, Acid hydrocacboxylic, Acid aminic, Andehit formic…
Đây là chất lỏng, không màu, dễ bốc khói, hòa tan trong nước và các chất dung môi hữu cơ phân cực và hòa tan một ít trong các Hydrocacbon.
Mặc dù là một Acid yếu nhưng so sánh trong dãy đồng đẳng Acid cacboxylic no, đơn chức, mạch hở thì Acid formic lại là axit mạnh nhất, mạnh hơn cả Acid cacbonic (H2CO3) bởi vì hiệu ứng dồn mật độ electron trong nhóm Cacboxyl (-COOH).
Trong Hydrocacbon và trong pha hơi, Acid formic bao gồm các chất Dimer liên kết Hydro chứ không phải là các phân tử riêng lẻ.
Trong ngành công nghiệp hóa chất, Acid formic từ lâu đã được coi là một hợp chất hóa học chỉ được sử dụng trong công nghiệp nhỏ. Tuy nhiên, vào cuối những năm 1960, Acid formic đã trở thành sản phẩm phụ của quá trình sản xuất Acid acetic. Ngày nay Acid formic được sử dụng ngày càng nhiều như một chất bảo quản và kháng khuẩn trong thức ăn chăn nuôi.
Điều chế sản xuất
Ngay từ thế kỷ 15, một số nhà giả kim và nhà tự nhiên học đã biết rằng đồi kiến tỏa ra hơi acid. Người đầu tiên mô tả sự phân lập của chất này bằng cách chưng cất một số lượng lớn xác kiến là nhà tự nhiên học người Anh John Ray vào năm 1671. Kiến tiết ra Acid formic để tấn công và phòng thủ. Acid fomic lần đầu tiên được tổng hợp từ Acid hydrocyanic bởi nhà hóa học người Pháp Joseph Gay-Lussac. Năm 1855, một nhà hóa học người Pháp khác, Marcellin Berthelot, đã phát triển một phương pháp tổng hợp từ Carbon monoxide tương tự như phương pháp được sử dụng ngày nay.
Acid formic được tổng hợp trong phòng thí nghiệm bằng hai cách:
- Nung nóng Acid oxalic trong Glixerol khan và chiết bằng cách chưng hơi.
- Thủy phân Acid etyl isonitrile với chất xúc tác là dung dịch HCl.
Trong công nghiệp, Acid fomic có thể thu được bằng các cách:
Một số lượng đáng kể Acid fomic được sản xuất qua quá trình điều chế các chất khác, đặc biệt là Acid acetic. Đây là quá trình được gọi là chiết xuất sản phẩm phụ.
Metanol tác dụng với Cacbon monoxide dưới sự xúc tác của một bazơ mạnh sẽ sẽ tạo ra Metyl fomiat, một dẫn xuất của Acid fomic. Sau đó, tiến hành phản ứng thủy phân của Metyl fomiat tạo ra Acid fomic.
Để quá trình thủy phân trực tiếp Metyl fomiat, nhà sản xuất thực hiện quá trình gián tiếp khi cho Metyl fomiat phản ứng với Amoniac để tạo ra Formamide và sau đó thủy phân Formamide bằng Acid sulfuric để tạo ra Acid formic.
Cơ chế hoạt động
Acid formic thể hiện tính chất của nhóm Cacboxyl (-COOH) như sau:
Đặc trưng nổi bật của nhóm này chính là phản ứng Este hóa. Đây là phản ứng thuận nghịch được xúc tác nhờ Acid sunfuric đặc và nhiệt độ.
Tính chất cuối cùng đó là phản ứng tráng gương hay còn được gọi là phản ứng tráng bạc. Đây là loại phản ứng đặc trưng của Andehit. Đặc trưng của phản ứng tráng gương là tính khử. Khi nhóm chức Anđehit tác dụng với AgNO3 hoặc Ag2O trong môi trường NH3 tạo ra Ag.
Beta Hydroxy Acid là gì?
Beta Hydroxy Acid (hay chúng ta vẫn quen gọi tắt là BHA) là một hợp chất hữu cơ có khả năng giúp loại bỏ tế bào chết cho da. Sở dĩ Beta Hydroxy Acid có tác dụng này là nhờ vào khả năng tan trong dầu và hoạt động bên trong lỗ chân lông để giải quyết tình trạng bít tắc. Chính vì vậy, với những ai sở hữu làn da dầu, lỗ chân lông to, bề mặt da không mịn màng thì mỹ phẩm chứa thành phần Beta Hydroxy Acid là một chọn lựa phù hợp.
Beta Hydroxy Acid gồm có các loại sau: Axit B-Hydroxybutyric, Axit B-hydroxy methyl-methylbutyric, Carnitine, Axit Salicylic. Tuy nhiên, trong mỹ phẩm, thuật ngữ BHA (Beta Hydroxy Acid) thường phổ biến dùng nói đến loại Axit Salicylic. Nhờ có nguồn gốc từ tự nhiên nên Beta Hydroxy Acid mang lại nhiều tác dụng tích cực cũng như rất có lợi cho làn da.
Trong khi AHA - thành phần cũng khá quen thuộc có mặt trong nhiều loại mỹ phẩm chỉ có thể tan trong nước nên chỉ có tác dụng trên bề mặt da thì Beta Hydroxy Acid là một acid gốc ưa dầu, nhờ đó mà hợp chất này sẽ có thể thâm nhập sâu hơn vào lỗ chân lông, giúp người dùng dễ dàng loại bỏ những tế bào da chết bên trong cùng lượng chất nhờn dư thừa.
Beta Hydroxy Acid thường được chỉ định dùng cho làn da nhờn, da dễ bị mụn trứng cá và điều trị mụn đầu đen, mụn đầu trắng. Nhờ có đặc tính chống viêm và kháng khuẩn, Beta Hydroxy Acid phù hợp để sử dụng cho mục đích trị mụn nhờ khả năng có thể đi qua dầu giúp bình thường hóa lớp lót của lỗ chân lông vốn là nơi góp phần gây ra mụn trứng cá.
Điều chế sản xuất Beta hydroxy acid
Beta Hydroxy Acid là hợp chất hữu cơ, phần lớn được chiết xuất từ vỏ cây liễu willow bark, dầu của cây lộc đề xanh.
Cơ chế hoạt động
Beta Hydroxy Acid hoạt động chủ yếu như là một hoạt chất giúp tẩy da chết bằng cách thâm nhập sâu vào các lỗ chân lông. Thành phần này sẽ làm bong tróc các tế bào da chết và kích thích sản sinh các tế bào mới phát triển.
Ngoài ra, nhờ thâm nhập sâu vào trong lỗ chân lông, Beta Hydroxy Acid cũng đồng thời khắc phục những vấn đề bí tắc lỗ chân lông, từ đó có thể kiểm soát và làm giảm mụn rất hiệu quả.
Beta Hydroxy Acid giúp cải thiện nếp nhăn, độ nhám của da và hỗ trợ làm giảm các rối loạn sắc tố da.
Acrylates Copolymer là gì?
Acrylates Copolymer là một loại polyme của chất đồng trùng hợp carboxyl hóa acrylic có trọng lượng phân tử cao. Thuộc hợp chất cao phân tử kỵ nước, Acrylates Copolymer thường được sử dụng với vai trò chống thấm trong mỹ phẩm. Acrylates Copolymer tồn tại ở dạng bột mịn, màu trắng, tan trong dầu.
Sự an toàn của Acrylates Copolymer có chứa monome axit acrylic đã được đánh giá bởi Hội đồng chuyên gia đánh giá thành phần mỹ phẩm (CIR). Acrylates Copolymer là chất an toàn để sử dụng trong mỹ phẩm và các sản phẩm chăm sóc cá nhân.
Cơ chế hoạt động của Acrylates Copolymer
Acrylates Copolymer có khả năng hấp thụ sự bài tiết của da, do vậy giảm bớt độ bóng của da và tạo ra bề mặt da được cải thiện cho việc trang điểm. Thành phần này cũng tạo cảm giác dễ chịu với các chất dùng trong mỹ phẩm và giúp giảm bớt bất kì cảm giác nhờn của sản phẩm mang lại.
Chitosan là gì?
Chitosan là dẫn xuất N-deacetylated của Chitin – một Polysaccharid có nhiều trong nấm, nấm men, các động vật không xương sống ở biển và động vật chân đốt. Chất Chitin được dùng để sản xuất ra Chitosan.
Chitin là một Polysaccharide mạch thẳng, là một Polymer của nhiều đơn vị N-acetyl-glucosamine nối với nhau nhờ cầu β-1,4glucoside. Vì Chitin tự nhiên có trong vỏ tôm thường liên kết với Protein, Lipid, Canxi, sắc tố… nên thường phải làm sạch trước khi sử dụng để sản xuất Chitosan.
Hai bước chính để làm sạch Chitin gồm khử khoáng bằng Acid và khử Protein bằng kiềm hoặc một Enzyme protease. Chitosan liên quan chặt chẽ với Chitin, nung nóng Chitin trong dung dịch xút đậm đặc, các gốc Acetyl bị khử hết và Chitin chuyển thành Chitosan.
Trong thiên nhiên, Chitin còn hiện diện dưới nhiều hình thức: Khá tinh khiết (sâu bướm), trong các lớp rất mỏng (cánh bướm, với hiệu ứng màu tuyệt vời), cùng với các protein tạo thành sclerotin (chất chính trong bộ xương ngoài của côn trùng)…
Chitosan có khả năng tạo thành màng mỏng, kết hợp với nước, chất béo, ion kim loại, có tính kháng khuẩn…, vì vậy được ứng dụng trong nhiều lĩnh vực khác nhau, đặc biệt là trong dược phẩm, mỹ phẩm.
Điều chế sản xuất Chitosan
Chitin dễ dàng thu được từ vỏ cua, vỏ tôm và sợi nấm.
- Cách đầu tiên, sản xuất Chitin có liên quan đến các ngành công nghiệp thực phẩm, điển hình là ngành đóng hộp. Sản xuất Chitin và Chitosan phần lớn dựa vào vỏ tôm và vỏ cua được lấy về từ các nhà máy đóng hộp. Việc sản xuất Chitosan từ vỏ động vật giáp xác (được xem như dạng chất thải của ngành công nghiệp thực phẩm) mang tính khả thi rất cao về mặt kinh tế.
- Cách thứ hai, sản xuất phức hợp Chitosan-glucan đi liền với quá trình lên men, tương tự như việc sản xuất Axit citric từ nấm Aspergillus niger, Mucor rouxii và Streptomyces bằng cách xử lý kiềm và tạo ra phức hợp trên.
Chất kiềm loại bỏ protein và đồng thời có thể đẩy nhóm chức acetyl ra khỏi hợp chất Chitin. Tùy thuộc vào nồng độ kiềm, một số glycans hòa tan được loại bỏ. Việc sử dụng vỏ động vật giáp xác chủ yếu để loại bỏ protein và hòa tan một lượng lớn Calcium carbonate có trong vỏ cua. Hợp chất Chitin đã bị khử Acetyl sẽ được tạo ra trong dung môi 40% Sodium hydroxide ở nhiệt độ 1.200C liên tục 1 tới 3 giờ đồng hồ. Cách xử lý này tạo ra 70% Chitosan đã khử Acetyl.
Cơ chế hoạt động
Sự xuất hiện của các vi sinh vật kháng kháng sinh dẫn đến nhu cầu cấp thiết để phát triển các loại kháng sinh thay thế. Các vi hạt Chitosan (CM), có nguồn gốc từ Chitosan, đã được chứng minh là làm giảm sự phát tán của vi khuẩn E. coli O157: H7, cho thấy khả năng sử dụng CM như một chất kháng khuẩn thay thế. Tuy nhiên, cơ chế cơ bản của CM trong việc giảm sự phát triển của mầm bệnh này vẫn chưa rõ ràng.
Để hiểu phương thức hoạt động, cần nghiên cứu các cơ chế phân tử của hoạt động kháng khuẩn của CM bằng phương pháp in vitro và in vivo. CM là một chất diệt khuẩn hiệu quả với khả năng phá vỡ màng tế bào. Các thử nghiệm liên kết và nghiên cứu di truyền với một chủng đột biến ompA đã chứng minh rằng Protein màng ngoài OmpA của E. coli O157: H7 rất quan trọng đối với liên kết CM. Hoạt động liên kết này được kết hợp với tác dụng diệt khuẩn của CM.
Điều trị CM có hiệu quả làm giảm sự phát tán của E. coli gây bệnh trong tử cung so với điều trị kháng sinh. Vì độc tố Shiga được mã hóa trong bộ gen của xạ khuẩn thường biểu hiện quá mức trong quá trình điều trị bằng kháng sinh, nên thường không khuyến cáo điều trị bằng kháng sinh vì nguy cơ cao mắc hội chứng urê huyết tán huyết.
Tuy nhiên, xử lý CM không tạo ra vi khuẩn hoặc độc tố Shiga ở E. coli O157: H7, cho thấy CM có thể là một ứng cử viên tiềm năng để điều trị các bệnh nhiễm trùng do mầm bệnh này gây ra. Công việc này thiết lập một cơ chế cơ bản, nhờ đó CM phát huy hoạt tính kháng khuẩn, cung cấp cái nhìn sâu sắc về việc điều trị các bệnh do nhiều mầm bệnh gây ra, bao gồm cả vi sinh vật kháng kháng sinh.
Cetrimonium Chloride là gì?
Cetrimonium Chloride, Cetrimonium Bromide và Steartrimonium Chloride là các muối amoni bậc bốn được dùng rất phổ biến trong các sản phẩm chăm sóc cá nhân. Cetrimonium Chloride có đặc tính như tan trong nước, là chất hoạt động bề mặt và có khả năng kháng khuẩn, chống viêm.
Cetrimonium Chloride tồn tại ở dạng chất lỏng màu vàng nhạt, mùi nồng, có thể tương thích với chất hoạt động bề mặt không ion, cation và các dung môi phân cực. Nhờ những đặc tính kể trên mà các nhà sản xuất chuộng sử dụng Cetrimonium Chloride trong các sản phẩm chăm sóc tóc để giúp người dùng giải quyết các vấn đề hư tổn của tóc do làm tóc và nhiệt độ quá cao.
Bên cạnh đó, Cetrimonium Chloride còn được sử dụng như là một loại chất hoạt động bề mặt hiệu quả, nó có khả năng cân bằng điện tích trên bề mặt tóc giúp tóc mượt mà hơn trong thời tiết lạnh, khô…
Đạm thủy phân từ men bia là gì?
Đạm thủy phân từ men bia có tên quốc tế là Protein hydrolyzates và có công thức phân tử là C29H29N3O3S. Đạm thủy phân từ men bia là chất thu được từ quá trình thủy phân axit, kiềm hoặc enzyme của saccharomyces cerevisiae, kết quả thu được bao gồm chủ yếu là axit amin, peptide và protein. Đạm thủy phân từ men bia có thể chứa các tạp chất chủ yếu là carbohydrate và lipid cùng với một lượng nhỏ các chất hữu cơ có nguồn gốc sinh học.

Điều chế sản xuất đạm thủy phân từ men bia
Thành phần và chất lượng của đạm men bia
Men bia được lên men để thu được sinh khối có giá trị tức có thể được sử dụng làm nguồn protein. Thông thường, hàm lượng protein của tế bào men bia có thể chiếm 40% - 60% trọng lượng khô. Dưới tác dụng của việc chuẩn bị hoặc chế biến thực phẩm, phần phi protein trong tế bào men bia được loại bỏ hoặc loại bỏ một phần, để có thể thu được các sản phẩm của protein men bia với số lượng lớn. Tóm lại, những protein men bia này chứa nhiều axit amin và cũng có một lượng nhỏ khoáng chất, lipid.
Sản xuất đạm men bia thủy phân
Việc sản xuất đạm men bia là một cách khả thi để giải quyết thách thức về sự gia tăng đáng kể nhu cầu protein trên toàn thế giới. Việc gia tăng sinh khối men bia và cô đặc protein bằng cách lên men chất thải nông nghiệp là một trong những phương pháp hiệu quả nhất để sản xuất protein men bia nhờ tỷ lệ tái sản xuất cao và hiệu suất cao.

Phương pháp xử lý dòng chảy thủy nhiệt liên tục được gọi là “thủy phân nhanh” đã được triển khai để thu hồi protein và xử lý nấm men. Thức ăn thừa chứa 1-15% trọng lượng men được thủy phân ở nhiệt độ từ 160 đến 280°C trong thời gian lưu rất ngắn 10 ± 2 giây. Sử dụng 10% trọng lượng men bia ở 240°C, 66.5% carbon, 70.4% nitơ và 61% sinh khối men bia tổng thể được hòa tan trong dịch thủy phân lỏng. Dịch thủy phân lỏng có 63.1% axit amin được phân tích trong thức ăn lên men được thử nghiệm làm chất dinh dưỡng để nuôi cấy vi khuẩn E. coli trong lò phản ứng sinh học. Nồng độ E. coli ở trạng thái ổn định lần lượt là 1,18 g/L và 0,93 g/l khi sử dụng dịch thủy phân lỏng và chiết xuất men bia thương mại. Từ đó có thể nghĩ rằng đạm thủy phân từ men bia có thể sử dụng cho quá trình phát triển của sinh vật.
Cơ chế hoạt động
Men bia là các vi sinh vật đơn bào được sử dụng chủ yếu trong dinh dưỡng vì tác dụng có lợi của chúng nhờ vào các thành phần tế bào và các hợp chất hoạt tính sinh học do chúng tạo ra, trong đó có mannan, β-glucans, nucleotides, mannan oligosacarides và các loại khác. Các tác dụng có lợi của đạm thủy phân từ men bia là khả năng điều chỉnh hệ vi sinh vật đường ruột, kích thích sự phát triển của vi khuẩn có lợi và giảm sự xâm nhập của mầm bệnh. Mặc dù việc sử dụng tế bào men bia sống làm chế phẩm sinh học trong thực phẩm chăn nuôi gia cầm đã được xem xét nhưng lại có ít thông tin về các sản phẩm có nguồn gốc từ men bia. Tuy nhiên, vẫn còn nhiều lĩnh vực cần được nghiên cứu để hiểu rõ hơn và tháo gỡ bí mật về những tác động cũng như cơ chế hoạt động của đạm men bia thủy phân.

Sản phẩm liên quan