PVP
Phân loại:
Thành phần khác
Mô tả:
Polyvinyl Pyrrolidone (PVP) là gì?
PVP (polyvinyl pyrrolidone) là một polymer có thể hòa tan trong nước có đặc tính tạo màng. PVP là thành phần kết dính được sử dụng trong ngành mỹ phẩm và làm đẹp.

PVP lần đầu tiên được Walter Reppe tổng hợp cho một trong những dẫn xuất của hóa học acetylene và được cấp bằng sáng chế vào năm 1939 . PVP ban đầu được sử dụng như một chất thay thế huyết tương và sau đó trong rất nhiều ứng dụng trong y học, dược phẩm, mỹ phẩm và sản xuất công nghiệp.
Điều chế sản xuất
Trong một nghiên cứu đã chế tạo thành công các mẫu bột và màng mỏng ZnS:Mn-PVP với hàm lượng PVP khác nhau. Các hạt ZnS:Mn có kích thước trung bình khoảng 2-3nm được tính bằng công thức Scherrer. Hình dạng cầu của các hạt cho thấy PVP có vai trò của tác nhân bọc phủ do tương tác của ion Zn2+ với các nguyên tử O và N của polymer dị vòng PVP. Kích thước trung bình các hạt trong ảnh TEM khoảng 10nm, với lớp vỏ polymer PVP bọc phủ bên ngoài các hạt nano ZnS:Mn.
Các dải phát quang của PVP gần giống với ZnS, đóng góp huỳnh quang của màng mỏng ZnS:Mn bọc phủ PVP. Tính chất quang được tăng cường đáng kể của của ZnS:Mn-PVP và còn có thể liên quan tới các hiệu ứng giam cầm lượng tử, hiệu ứng kích thước lượng tử của các hạt nano ZnS. Khi chúng được khuếch tán trong nền PVP, điều này cần có những khảo sát tiếp theo như: phổ hấp thụ quang, phổ kích thích huỳnh quang…
Cơ chế hoạt động
PVP có thể hòa tan trong nước và các dung môi phân cực khác. Thành phần này cũng có thể hòa tan trong các loại rượu như ethanol, metanol, ở các dung môi kỳ lạ hơn như eutectic, được hình thành bởi choline chloride và urê (Relin). Khi ở trạng thái khô PVCP dễ dàng hấp thụ tới 40% trọng lượng của thành phần trong nước, khí quyển.
Đặc tính đặc biệt của PVP là làm ướt nhanh và dễ dàng tạo thành phim. Vì vậy dùng PVP như một lớp phủ hoặc phụ gia cho lớp phủ. Chất huỳnh quang của PVP và thủy phân oxy hóa của hoạt chất đã được một số nghiên cứu chỉ ra.
Dược động học:
Dược lực học:
Xem thêm
Methionine là gì?
Trong nhiều protein của thức ăn người ta tìm thấy aminoaxit thiết yếu ở các mô và cơ quan của cơ thể con người (cơ thể không thể tự tổng hợp).
Methionine có vai trò cấu thành nên protein và còn giữ một số nhiệm vụ khác, đặc biệt là khả năng chuyển thành phân tử chứa lưu huỳnh. Nó đảm nhiệm nhiều vai trò khác nhau, bao gồm bảo vệ các mô, chỉnh sửa DNA và duy trì hoạt động của tế bào.

Những phân tử này bắt buộc phải được tạo thành từ những amino acid chứa lưu huỳnh, hai axit amin đảm nhận vai trò đó là methionine và cysteine. Cysteine cơ thể tự tổng hợp được, nhưng methionine thì không, cơ thể phải hấp thụ từ bên ngoài (dược phẩm bổ sung, thức ăn).
Methionine còn giữ một vai trò quan trọng khác trong quá trình tạo ra các protein để thay thế những axit amin già và cũ.
Methionine giúp cải thiện tông màu và độ đàn hồi của da, giúp tóc khỏe mạnh và tăng cường móng tay. Để điều trị các bệnh nhiễm trùng và rối loạn khác nhau người ta thường bổ sung Methionine
Điều chế sản xuất
Hoạt chất methionine có thể chuyển đổi thành một số phân tử chứa lưu huỳnh với các chức năng quan trọng, như glutathione, taurine, SAM và creatine. Đối với các chức năng bình thường của các tế bào trong cơ thể bạn, nó là những phân tử rất quan trọng.
Cơ chế hoạt động
Hoạt chất methionin là một acid amin thiết yếu có trong thành phần của chế độ ăn và trong công thức của các chế phẩm đa acid amin để nuôi dưỡng. Để điều trị ngộ độc paracetamol đề phòng tổn thương gan, Methionin tăng cường tổng hợp gluthation và được sử dụng thay thế cho acetylcystein. Để làm giảm pH nước tiểu, Methionin còn được dùng theo đường uống. Methionin được chuyển hóa ở gan.
Ascorbyl Glucoside là gì?
Ascorbyl Glucoside (vitamin C gốc đường) là một dẫn xuất của vitamin C. Ascorbyl Glucoside có độ pH từ 5-7. Khác với tác dụng trực tiếp khi lên da của các gốc C khác như LAA, EAA, MAP, SAP… Ascorbyl Glucoside sau khi lên da sẽ trải qua một quá trình hấp thụ và chuyển đổi thì mới mang lại những hiệu quả rõ rệt cho da.

Cụ thể, sau khi Ascorbyl Glucoside được hấp thụ vào da, một loại Enzyme được gọi là Alpha-Glucosidas sẽ phân hủy nó thành LAA (L – Ascorbic Acid). Quá trình này sẽ giúp da nhận được những hiệu quả của vitamin C như làm sáng da, chống oxy hóa, mờ thâm, làm mờ nếp nhăn... Và đồng thời hạn chế được tối đa các khả năng kích ứng so với khi bôi trực tiếp gốc L-AA lên da.
Người dùng sử dụng vitamin C gốc LAA thường hay gặp phải tình trạng khó hấp thụ, vitamin C bị oxy hóa ngay trên bề mặt da và khiến da bị vàng sạm. Những ai gặp trường hợp này khi sử dụng LAA thì có thể tham khảo sang gốc Ascorbyl Glucoside (Vitamin C gốc đường). Vì gốc này ổn định với ánh sáng hơn rất nhiều, cũng như độ hấp thụ và thẩm thấu tốt hơn hẳn.
Vì phải trải qua một giai đoạn chuyển hóa nên nhìn chung Ascorbyl Glucoside sẽ có hiệu quả chậm hơn so với vitamin C gốc LAA. Tuy nhiên, đây sẽ là một giải pháp an toàn, dài lâu, và cũng như đảm bảo sản phẩm đang dùng không bị oxy hóa giữa chừng. Thêm một điểm nhỏ nữa thì bảo quản Vitamin C gốc LAA khó cực kỳ, bạn phải để tránh ánh sáng trực tiếp, thường xuyên kiểm tra màu sản phẩm, nếu nó bị vàng ngà đi thì tinh chất đã bị oxy hóa và không thể sử dụng được nữa. Vitamin C gốc LAA tốt nhất nên được bảo quản ở tủ lạnh. Ngược lại, các sản phẩm chứa Ascorbyl Glucoside thì chỉ cần để ở nhiệt độ phòng và không cần lo ngại đến khả năng sản phẩm bị oxy hóa.
Vì sẽ chuyển hóa thành LAA sau khi lên da nên Ascorbyl vẫn duy trì những hiệu quả tốt của vitamin C đối với da. Nổi bật là các hiệu quả như chống oxy hóa, làm sáng da, giảm thâm, tăng độ đàn hồi, thúc đẩy hình thành và tái tạo Collagen trên da. Ưu điểm lớn của Ascorbyl Glucoside là thẩm thấu tốt, ít gây kích ứng trên da và hầu như sản phẩm không bị oxy hóa ngay cả khi bảo quản ở môi trường nhiệt độ phòng.
Điều chế sản xuất Ascorbyl Glucoside
Sản xuất công nghiệp của Ascorbyl Glucoside chủ yếu bao gồm việc chuẩn bị, tinh chế, kết tinh của ba quy trình chính.
Hiện nay, quá trình chuyển đổi sinh học là cách duy nhất để tổng hợp glucoside ascorbic acid, tức là sử dụng glucoside trên glucosyl donor được chuyển đến vị trí C 2 của vitamin C bằng cách sử dụng transglycosylation cụ thể của glycosyltransferase.
Trong phản ứng này, các độ dài khác nhau của các nhóm glucosyl có thể được gắn với vị trí C 2 của vitamin C để sản xuất một hỗn hợp AA-2Gn (n = 1,2,3,4,5-C có thể chuyển thành Ascorbyl Glucoside bằng cách bổ sung một glucoamylase để giảm mức độ trùng hợp.

Ngoài ra, các đồng phân AA-5G, AA-6G và các AA-2G khác có xu hướng hình thành trong phản ứng glycosyltransferase, và các nhà tài trợ vitamin C và glucose vẫn tồn tại sau phản ứng, do đó phản ứng glycosyl hóa hoàn thành, dung dịch phản ứng được tách ra và tinh chế, và cuối cùng là phương pháp tinh thể để có được độ tinh khiết cao ascorbyl glucoside sản phẩm.
Cơ chế hoạt động của Ascorbyl Glucoside
Ascorbyl Glucoside có cấu trúc bao gồm một nhóm của L-ascorbic Acid và Glucose. Khi thẩm thấu qua da, thành phần này sẽ được enzyme alphe-glucosidase phân chia thành L-ascosbic Acid và Glucose tách biệt.
Khi đó, thành phần này cũng sẽ sở hữu chức năng tương tự như L-ascorbic acid thông thường, có khả năng hoạt động như một coenzyme kích thích quá trình tổng hợp Collagen của da.
Ceramide là gì?
Ceramide được biết đến là một trong ba loại lipid tham gia cấu tạo lớp màng trên bề mặt da. Chất này chiếm 40-50% lipid ở lớp ngoài cùng của da – còn gọi là lớp sừng (số % còn lại là cholesterol và các acid béo tự do).
Có vai trò thiết yếu đảm bảo khả năng hoạt động của hàng rào bảo vệ da (lớp màng Hydrolipid) và duy trì độ ẩm cần thiết của da, Ceramide có thể nói là một trong những thành phần quan trọng quyết định đến vẻ đẹp của làn da.

Tham gia cấu tạo làn da, tuy nhiên Ceramide theo thời gian sẽ mất dần đi. Bên cạnh đó, tuổi tác cùng những ảnh hưởng từ ánh nắng mặt trời cũng khiến sự sản sinh ceramide tự nhiên trên da bị giảm sút. Hậu quả là làn da chúng ta mất nước và độ ẩm trở nên khô hơn, nếp nhăn xuất hiện, kích ứng hoặc mẩn đỏ. Sử dụng ceramide trong chăm sóc da thời điểm này để khôi phục đáng kể lượng ceramide bị giảm sút.
Cơ chế hoạt động của Ceramide
Khi chúng ta dùng sản phẩm bôi ngoài da, Ceramide sẽ bắt chước các chất béo có trong da, nhanh chóng hấp thụ vào bề mặt da, lấp đầy những “vết nứt” do thiếu hụt. Ceramide hoạt động ở lớp da trên cùng (lớp biểu bì), đồng hành cùng hàng rào bảo vệ da.
Mọi loại da đều có thể phù hợp để sử dụng sản phẩm có chứa Ceramide.
Cellulose Gum là gì?
Cellulose gum là muối Natri của Carboxymethyl cellulose (CMC), lần đầu tiên được sản xuất vào năm 1918. Sau khi được giới thiệu rộng rãi ở Mỹ vào năm 1946, Cellulose gum được sử dụng phổ biến trong nhiều lĩnh vực, trong đó có mỹ phẩm bởi những chức năng quan trọng như chất làm đặc, ổn định nhũ tương, chất kết dính…

Về mặt hóa học, Cellulose gum là một Polymer, là một dẫn xuất Cellulose với các nhóm Carboxymethyl (-CH2COOH) liên kết với một số nhóm Hydroxyl của các Glucopyranose monomer tạo nên khung sườn Cellulose. Chất này thường được sử dụng dưới dạng Natri carboxymethyl cellulose.
Đây là chế phẩm ở dạng bột trắng, hơi vàng, gần như không mùi hạt hút ẩm, có thể tạo dung dịch dạng keo với nước nhưng không hòa tan trong Ethanol.
Điều chế sản xuất
Cellulose gum được sản xuất từ các bộ phận của một số loài thực vật, chủ yếu lấy phần cây hoặc bông. Nguồn Cellulose gum được trồng ổn định và được chế biến bằng cách sử dụng Acid axetic và muối. Axit axetic là một axit nhẹ, là thành phần chính của giấm. Sau khi trộn bông hoặc gỗ với Acid axetic và muối, hỗn hợp này được lọc và làm khô để tạo ra một loại bột mịn, đó là Cellulose gum.
Cơ chế hoạt động
Độ tan và nhiệt độ
Cellulose gum có độ tan và nhiệt độ phụ thuộc vào giá trị DS tức là mức độ thay thế. Giá trị DS cao cho độ hòa tan thấp và nhiệt độ tạo kết tủa thấp hơn do sự cản trở của các nhóm Hydroxyl phân cực. Cellulose gum tan tốt ở 40 độ C và 50 độ C.
Cách tốt nhất để hòa tan Cellulose gum trong nước là trộn bột trong nước nóng, để các hạt Cellulose methyl được phân tán trong nước, khi nhiệt độ hạ xuống, khuấy đều thì các hạt này sẽ bị tan ra. Với dẫn xuất dưới 0.4, Cellulose gum không hòa tan trong nước.
Độ nhớt
Cellulose gum với dẫn xuất 0,95 và nồng độ tối thiểu 2% cho độ nhớt 25Mpa tại 25 độ C.
Thông thường, dung dịch 1% có pH = 7 – 8,5. Ở pH< 3 thì độ nhớt tăng, thậm chí kết tủa. Do đó không sử dụng được Cellulose gum cho các sản phẩm có pH thấp. Độ pH >7 thì độ nhớt giảm ít. Độ nhớt Cellulose gum giảm khi nhiệt độ tăng và ngược lại.
Cellulose Gum dễ dàng hòa tan trong nước và dung dịch Sorbitol ở các nồng độ khác nhau để mang lại độ nhớt mong muốn.
Tạo đông
Cellulose gum có khả năng tạo đông thành khối vững chắc với độ ẩm rất cao (98%). Nồng độ Cellulose gum, độ nhớt của dung dịch và lượng nhóm Acetat là những yếu tố quyết định độ chắc và tốc độ tạo đông khi được thêm vào để tạo đông. Nồng độ tối thiểu để Cellulose gum tạo đông là 0,2% và của nhóm Acetat là 7% so với Cellulose gum.
Cellulose gum chủ yếu được sử dụng để làm đặc và ổn định mỹ phẩm. Ngoài ra, do cấu trúc cao phân tử của Cellulose gum nên chất này hoạt động như chất tạo màng. Cellulose gum cũng được sử dụng để cải thiện hiệu quả dưỡng ẩm.
Hỗn hợp Cellulose gum và Xanthan có thể được sử dụng để cải thiện độ nhớt của công thức cuối cùng.
Cera Microcristallina là gì?

Cera Microcristallina có tên hóa học là Hydrocarbon Waxes, Microcryst, Petroleum Wax, Microcrystalline wax (sáp tinh thể). Thành phần này có màu từ trắng đến màu nâu tùy thuộc vào mức độ tinh chế, đục, không mùi, dễ uốn; không hòa tan trong nước, hòa tan trong rượu ấm, dầu và sáp tan chảy khác.
Đây là một hỗn hợp tinh chế của các Hydrocacbon béo bão hòa, rắn, có khối lượng phân tử cao và có nguồn gốc từ dầu mỏ. So với sáp Paraffin, Cera Microcristallina sẫm màu hơn, nhớt, đặc, dính và đàn hồi hơn, đồng thời có trọng lượng phân tử và điểm nóng chảy cao hơn.
Cera Microcristallina là một loại sáp được sử dụng trong sản phẩm chăm sóc da và mỹ phẩm để làm đặc và cải thiện kết cấu cũng như tính nhất quán của công thức.
Sáp Cera Microcristallina khác với sáp Parafin tinh chế ở chỗ cấu trúc phân tử phân nhánh nhiều hơn và chuỗi Hydrocacbon dài hơn (trọng lượng phân tử cao hơn). Cera Microcristallina dai, linh hoạt và có nhiệt độ nóng chảy cao hơn sáp Parafin nên loại sáp này thường được thay thế Parafin.
Sáp Parafin có nhiệt độ nóng chảy thấp hơn nhưng chất lượng cháy tốt hơn, đó là lý do tại sao vật liệu này được chọn dùng để làm nến hơn Cera Microcristallina. Trong khi sáp vi tinh thể có xu hướng dày và dai hơn nhưng có độ mềm dẻo và đàn hồi tốt hơn. Những loại sáp này cũng hoạt động tốt hơn như một chất chống ẩm.
Cera Microcristallina được sử dụng phổ biến trong son môi, giúp son giữ nguyên được hình dạng. Vì sáp vi tinh thể chứa một lượng dầu cao nên nó cũng có thể giữ cho son kem không bị đổ mồ hôi.
Sáp là một chất làm mềm tự nhiên, giúp cho da dẻo dai và mềm mại. Khi thoa lên da, nó sẽ bổ sung độ ẩm và tiếp tục tăng cường độ ẩm cho da sau khi điều trị xong. Nó cũng có thể giúp mở lỗ chân lông và loại bỏ các tế bào da chết.
Tuy nhiên, nếu bạn đang tìm kiếm các sản phẩm sáp thân thiện với môi trường, tốt nhất nên tránh bất kỳ sản phẩm nào có chứa Paraffin hoặc Cera Microcristallina vì những sản phẩm này không thân thiện với môi trường. Thay vào đó, hãy tìm các sản phẩm có nguồn sáp từ động vật hoặc thực vật (có ghi thông tin trên nhãn sản phẩm), tùy thuộc vào việc bạn có thích sản phẩm thuần chay hay không.
Điều chế sản xuất
Cera Microcristallina là một loại sáp được sản xuất bằng cách khử dầu hỏa, như một phần của quá trình tinh chế dầu mỏ, nghĩa là loại bỏ dầu để giữ lại sáp.
Cơ chế hoạt động
Cera Microcristallina không nhũ hóa dễ dàng nhưng có thể được biến tính với chất xúc tác để tạo ra dạng oxy hóa, có thể nhũ hóa được sử dụng trong loại sáp sàn cứng, tự đánh bóng. Sáp vi tinh thể được sử dụng trong giấy cán và giấy bạc cũng như để đánh bóng. Nó đánh bóng thành thủy tinh trong suốt, mịn, không dính.
Agar là gì?
Việt Nam có sự đa dạng và phong phú về nguồn lợi rong biển như rong nâu, rong đỏ và rong lục. Loài có giá trị kinh tế cao như rong đỏ. Rong đỏ chứa rất nhiều các hoạt chất có giá trị như carrageenan ở rong sụn (Kappaphycus alvarezii, Kappaphycus striatum,…), agar ở trong rong câu chỉ vàng Gracilaria…
Agar là chất nền vững chắc để chứa môi trường nuôi cấy cho công việc vi sinh. Agar có thể được sử dụng như một chất thay thế gelatin cho người ăn chay, một chất nhuận tràng, một chất ức chế sự thèm ăn và một chất làm đặc cho súp. Trong việc bảo quản trái cây, kem lạnh và các món tráng miệng khác, trong trong sản xuất bia, giấy và vải định cỡ.

Chất tạo gel trong agar là một polysaccharide không phân nhánh thu được từ thành tế bào của loại tảo đỏ, chủ yếu từ tengusa (Gelidiaceae) và ogonori (Gracilaria). Agar là một polime được tạo thành từ các tiểu đơn vị của đường galactose.
Agar được ứng dụng trong rất nhiều lĩnh vực khác nhau như công nghệ thực phẩm, công nghệ dược, công nghệ vi sinh,… Agar là một loại rong biển được dùng để làm thuốc. Rong biển đỏ của Nhật là nguồn agar thường gặp nhất. Ở Nhật, agar còn thường được dùng để giảm cân.
Ngoài ra, Agar có tác dụng chữa bệnh tiểu đường và táo bón. Trong mỹ phẩm Agar là một dạng chất gel và được sử dụng trong sữa dưỡng da, thuốc gel, và một số loại thuốc đạn.
Đặc tính lưu biến của agar lại phụ thuộc vào cấu trúc của agar-agar cũng như sự liên kết của agar-agar với các ion kim loại, với các polysaccharide hay protein khác nhau.
Điều chế sản xuất Agar
Người ta có thể chiết xuất agar từ rong biển với nước nóng, sau đó là đóng băng và tan băng làm sạch. Quy trình chiết xuất thương mại liên quan đến rửa, chiết xuất hóa học, lọc, gel hóa, tẩy trắng, đông lạnh, rửa, làm khô và xay xát.
Bột rau câu agar được làm chủ yếu từ rong, là loại thuộc ngành tảo tự nhiên. Để làm ra được loại bột này trước tiên sau khi lấy tảo về làm đông, chúng được ép thủy lực để tách toàn bộ nước sau đó sấy khô và nghiền thành dạng bột mịn.
Cơ chế hoạt động của Agar
Hoạt chất Agar có tính thuận nghịch về nhiệt. Đun nóng polymer tạo thành một khối, khi dung dịch nguội đi các chuỗi sẽ bao lấy nhau và liên kết với nhau từng đôi một bằng liên kết hidro để tạo thành chuỗi xoắn kép. Giai đoạn tiếp theo là sự tổ hợp các chuỗi xoắn kép lại với nhau, tạo ra một mạng lưới không gian ba chiều nhốt các chất khô bên trong do số lượng liên kết hidro rất lớn. Cấu trúc gel vững chắc nhờ các nút mạng chứa liên kết ion nội phân tử, nên gel agar rất cứng và vững chắc.
Quá trình hình thành gel, độ ổn định của gel bị ảnh hưởng bởi hàm lượng, khối lượng phân tử của nó. Kích thước lỗ gel khác nhau phụ thuộc vào nồng độ agar, khi nồng độ agar càng cao kích thước lỗ gel càng nhỏ. Gel khô có thể tạo thành một màng trong suốt, bền cơ học và có thể bảo quản lâu dài mà không bị hỏng.
Khả năng tạo gel phụ thuộc hoàn toàn vào hàm lượng đường agarose. Agarose là các gel ngậm nước, các phân tử polymer kết hợp với nhau thông qua liên kết hydro. Đặc tính độc đáo này của gel, các gel giữ bên trong mạng lưới một lượng to lớn của nước có thể di chuyển tự do hơn thông qua việc trao đổi ion. Mỗi phân tử, duy trì cấu trúc của chúng trong sự độc lập hoàn toàn. Vì vậy, quá trình này không phải là sự đồng trùng hợp, nhưng là điểm thu hút tĩnh điện đơn giản. Hàm lượng agarose phụ thuộc vào nguyên liệu rong câu ban đầu và quá trình chế biến. Sự có mặt của ion sulfat làm cho gel bị mờ, đục, tránh dùng nước cứng để sản xuất. Chúng có khả năng giữ mùi, vị vàmàu, acid thực phẩm cao trong khối gel nhờ nhiệt độ nóng chảy cao (85–90oC).
Gel agar chịu được nhiệt độ chế biến lên đến 100oC, pH 5 – 8, có khả năng trương phồng và giữ nước. Không nên dùng agar trong môi trường pH nhỏ hơn 4 và có nhiều chất oxi hóa mạnh, agar có thể tạo đông ở nồng độ thấp. Biến đổi này có thể được lặp đi lặp lại nhiều lần nếu không có sự tác động của các chất thủy phân, agarose hay chất oxy hóa phá hủy gel. Gel agar khác các gel carrageenan, alginate là gel agar không cần sự tồn tại của cation vẫn có thể gel hóa. Tính chất quan trọng của gel agar là hiện tượng trễ gel rất cao, (sự khác biệt nhiệt độ giữa gel của chúng khoảng 38ºC), nhiệt độ nóng chảy (khoảng 85ºC).
Nồng độ agar được dùng tạo gel là từ 0,5% đến 2%, đối với mỗi loài rong khác nhau thì gel agar có hiện tượng trễ gel là khác nhau. Hiện tượng trễ gel được thể hiện trong hình 12 đối với mỗi loại agar khác nhau là 45ºC, các gel carrageenans có hiện tượng trễ ở khoảng 12ºC đến 26oC, thấp hơn so với gel agar. Chứng tỏ sự hiện diện của agarose ban đầu có tác động tới hiện tượng trễ gel. Nhiệt độ gel là một chỉ số để xác định nhiệt độ agarophyte sử dụng để hình thành môi trường agar. Cần dựa vào nhiệt độ tạo gel đặc trưng của agar sẽ xác định được nguồn gốc của nó.
Nhiệt độ tạo gel ảnh hưởng bởi mức độ methyl hóa của nhóm C6 của agarobioses hiện diện trong môi trường agar. Sự methyl hóa của agaroses trong Gelidiella lớn hơn trong Pterocladia, điều này chứng tỏ, methyl hóa nhóm carbon 6 lớn hơn sẽ có nhiệt độ gel hóa cao hơn. Quá trình gel hóa là quá trình tỏa nhiệt, các phân tử agarose được hòa tan trong nước.
Xoắn đôi phản đối xứng (B1) được hình thành trong sự kết hợp để tạo thành một lưới vĩ mô (C và D), xoắn B2 đơn giản được nối bằng cầu nối hydro tạo ra cấu trúc (xoắn đôi đối xứng) và hình thành nên mạng lưới vĩ mô có thể nhìn thấy (C và D). Cả hai quá trình tạo gel có thể cùng tồn tại và một hoặc các điều kiện khác tùy thuộc vào tốc độ làm mát, một tốc độ nhanh hơn ủng hộ quá trình đầu tiên. Nó đều dựa vào sự hình thành các cầu nối hydro và tạo ra một cấu trúc lưới vĩ mô.
Potassium Laureth Phosphate là gì?
Potassium Laureth Phosphate có tên gọi khác là Kali Laureth Phosphate. Potassium Laureth Phosphate là muối kali của hỗn hợp các este photphat của rượu lauryl đã oxy hóa với giá trị etoxy hóa trung bình từ 1 đến 3. Potassium Laureth Phosphate có công thức hóa học là C12H25K2O4P.

Potassium Laureth Phosphate tồn tại dạng chất lỏng dạng sệt màu trắng đục hoặc trong mờ với một lượng nhỏ tinh thể vẩy phosphate.
Điều chế sản xuất Potassium Laureth Phosphate như thế nào?
Alkyl phosphate có thể được điều chế bằng phản ứng của rượu béo với axit polyphosphoric để tạo ra alkyl phosphat tương ứng.
Thành phần phân tử ion trong công thức hay gặp nhất là muối của natri (sodium salts), sau đó là potassium.
Tùy vị trí gắn nhóm phosphate ta có các sản phẩm cụ thể như sau: Kali Laureth-2 Phosphate; Kali Laureth-3 Phosphate; Kali Laureth-4 Phosphate; Kali Laureth-7 Phosphate; Kali Laureth-8 Phosphate; Kali Laureth-10 Phosphate;
Cơ chế hoạt động Potassium Laureth Phosphate là gì?
Chất nhũ hóa chứa cả đầu ưa nước và ưa dầu. Khi bổ sung vào hệ dầu nước, phần đầu ưa dầu bao quanh giọt dầu, và phần ưa nước kết hợp với nước (hệ nước dầu ngược lại). Nhờ nguyên lý này, chất nhũ hóa sẽ làm giảm sự phân tách giữa dầu và nước, tạo lớp bảo vệ quanh pha dầu và giúp các giọt dầu đều và ngăn chúng đọng trở lại.
Trong mỹ phẩm, hệ nước trong dầu (W/O) là hệ nhũ tương cơ bản. Trong hệ nhũ tương này, dầu bao quanh nước, dầu tác động lên da trước sau đó đến nước, cả hai đều được hấp thụ vào da.
Tên gọi, danh pháp
Tên Tiếng Việt: Thạch tùng răng cưa.
Tên gọi khác: Cây chân sói.
Tên khoa học: Huperzia serrata , họ: Lycopodiaceae.
Đặc điểm tự nhiên
Thạch tùng răng cưa là một loại cây thân thảo lâu năm (15 - 40 cm) gần với dương xỉ, mọc ở vùng đất ngập nước và rừng ở hầu hết Trung Quốc và ở phía bắc Việt Nam, một khu vực từng là một tỉnh của Đế quốc Trung Hoa, dưới tên Giao Chỉ (từ năm 111 trước Công nguyên đến năm 939 sau Công nguyên).
Thân
Thạch tùng răng cưa có thân mọc thẳng hoặc mọc đối, 10 - 30 cm, đường kính 1,5 - 3,5 mm. ở giữa cùng với các lá rộng 1,5 - 4 cm, phân nhánh 2 - 4 lần, phần trên thường có củ.
Lá
Thạch tùng răng cưa có lá thưa, mọc vuông góc với thân, láng bóng, hình elip hẹp, thuôn rõ về phía gốc, thẳng, 1-3 cm × 1-8 mm, mỏng như da, cả hai mặt đều nhẵn, gân giữa nổi rõ,mép thẳng và không giòn, có răng không đều, đỉnh nhọn; răng nhọn ở đỉnh, thô hoặc hơi nhỏ.
Các lá mọc lệch gần gốc, lan dần về phía ngọn thân, xếp thành nhiều bậc xoắn ốc, không có khí khổng trên các mặt trục, các lá lớn nhất thuôn hẹp với đỉnh nhọn đột ngột.
Cây thạch tùng răng cưa
Phân bố, thu hái, chế biến
Thạch tùng răng cưa phân bố rộng rãi ở Nam Á, Ấn Độ và Bắc Mỹ. Thạch tùng răng cưa là một loại thảo mộc truyền thống và là dược liệu có nguy cơ tuyệt chủng của Trung Quốc, đã thu hút nhiều sự chú ý do sản xuất Huperzine A (HupA). Thạch tùng răng cưa sinh trưởng rất chậm, vòng đời dài nên năng suất thấp, hầu như không được nuôi trồng trong điều kiện tự nhiên hiện nay.
Ở Việt Nam, Thạch tùng răng cưa mới chỉ được phát hiện ở vùng núi cao trên 1.000 m tại Sa Pa (thuộc tỉnh Lào Cai) và Đà Lạt (thuộc tỉnh Lâm Đồng), nó thường sống dưới tán của các loại cây khác.
Bộ phận sử dụng
Bộ phận dùng của Thạch tùng răng cưa là phần thân cây trên mặt đất, có thể dùng tươi hoặc sấy khô để bảo quản lâu dài.
Tinosorb S là gì?
Tên hóa học thường gọi: Bemotrizinol.
PubChem CID: 135487856.
Tên gọi khác: BEMT, Tinororb S, Bis-ethylhexyloxyphenol methoxyphenyl triazine.
Tinosorb S có công thức phân tử hóa học là C38H49N3O5, trọng lượng phân tử là 627.8 g/mol.
Tinosorb S hay Bemotrizinol là một thành viên của methoxybenzenes. Bemotrizinol là một bộ lọc tia cực tím hữu cơ được tìm thấy trong các sản phẩm kem chống nắng không kê đơn. Bemotrinizol vừa hấp thụ tia UV-A vừa hấp thụ tia UV-B tuy nhiên nó chủ yếu hấp thụ tia UV-A.
So với các tác nhân hóa học phổ rộng cũ hơn, bemotrizinol hòa tan trong chất béo hơn (hòa tan trong dầu mỹ phẩm) để hỗ trợ hiệu quả và hoạt động phổ rộng. Nó được cho là có khả năng quang học, làm tăng khả năng bắt đầu hoạt động và hiệu quả trong việc bảo vệ chống lại tia UV khi bôi tại chỗ. Bemotrizinol thường được lưu thông trên thị trường với tên gọi Tinosorb S và Escalol S.

Bemotrizinol là một chất hóa học hòa tan trong dầu hấp thụ tia cực tím ở cả hai loại tia UV-A và UV-B. Nó được cấp bằng sáng chế và tiếp thị bởi Ciba Specialty Chemicals với tên Tinosorb S. Tính đến thời điểm viết bài này, nó được chấp thuận ở Châu Âu và Úc nhưng không được chấp thuận ở Hoa Kỳ.
Hầu như không có thành phần chống nắng đơn lẻ nào có thể bảo vệ toàn diện, một mình, kể cả Bemotrizinol. Tin tốt là bemotrizinol dường như tương thích với hầu hết các chất ngăn chặn tia UV-B và UV-A khác, do đó việc kết hợp với các thành phần chống nắng khác giúp tăng hiệu quả là khả thi. Trên thực tế, bemotrizinol ức chế sự phân hủy của một số thuốc không bị ảnh hưởng bởi ánh sáng như Avobenzone.
Không giống như một số chất chống nắng hữu cơ khác, các nghiên cứu trong ống nghiệm cho thấy rằng bemotrizinol dường như không có tác dụng kích thích tố. Cần phải có các nghiên cứu dài hạn hơn nữa về tính an toàn của con người.
Điều chế sản xuất Tinosorb S
Trên thực tế ngày nay, nhu cầu sử dụng kem chống nắng ngày càng tăng lên, kem chống nắng là công thức không thể thiếu trong quy trình bảo vệ và chăm sóc da không chỉ với phụ nữ mà cả nam giới. Có thể nói kem chống nắng là người bạn luôn đồng hành mỗi ngày với mỗi chúng ta, do đó với khả năng chống nắng cực kì hữu dụng, Tinosorb S đã và đang tham gia sản xuất trong hàng trăm hàng ngàn các sản phẩm kem chống nắng hiện nay.

Cơ chế hoạt động Tinosorb S
Tinosorb S hay Bemotrizinol hoạt động bằng cách hấp thụ các tia UV-A và UV-B từ 280 đến 400nm, bảo vệ đỉnh ở 348nm. Bemotrizinol phục vụ để ngăn chặn sự hình thành các gốc tự do gây ra bởi bức xạ UV.
Bemotrizinol giảm thiểu ban đỏ và mang lại hiệu quả chống lão hóa tuyệt vời cũng như tác dụng bảo vệ hệ thống phòng thủ chống oxy hóa của da. Trong một nghiên cứu so sánh về những cá nhân có tiền sử bệnh phát ban đa dạng cho ánh sáng (PLE - polymorphic light eruption) trải qua quá trình cung cấp ánh sáng, việc điều trị Bemotrinizol có hiệu quả trong việc ngăn ngừa sự phát triển của PLE.
Tea Tree Oil là gì?
Tea Tree Oil (Tinh dầu tràm trà) là chất lỏng không màu hoặc màu vàng nhạt, được chiết xuất từ lá cây trà (Melaleuca alternifolia), mọc ở vùng đầm lầy ven biển phía Đông Nam Queensland và bờ biển Đông Bắc New South Wales của nước Úc. Tinh dầu có mùi thơm đặc trưng khiến người dùng cảm thấy thư giãn, dễ chịu.

Tea Tree Oil có thành phần hóa học gồm 28 – 30 hợp chất khác nhau, trong đó chủ yếu là:
Terpinen-4-ol (46,6%): Nguyên liệu dùng để sản xuất các loại thuốc sát khuẩn và nấm đặc hiệu dưới dạng thuốc bôi hoặc dạng hít.
Cineol (1,8 – 2,4%): Có mùi thơm mát, hơi cay, được dùng trong ngành dược phẩm, mỹ phẩm (đặc biệt là nước hoa) và trong các sản phẩm xua đuổi côn trùng. Chất này còn là phụ gia cho thuốc lá.
Terpinenene: Chiếm 10 – 25% và Terpinene chiếm 18,6 – 23,65%.
Những người thổ dân ở Úc có truyền thống sử dụng Tea Tree Oil như một chất khử trùng (diệt vi trùng) và một loại thuốc thảo dược.
Ngày nay, việc sử dụng tinh dầu này để bôi ngoài da được khuyến khích đối với nhiều tình trạng khác nhau như mụn trứng cá, nấm da chân, chấy, nấm móng tay, vết cắt, nhiễm trùng ve ở đáy mí mắt và côn trùng cắn.
Điều chế sản xuất
Tea Tree Oil được tạo ra từ quá trình chưng cất hơi nước của lá cây trà ở Úc.
Cơ chế hoạt động
Các hoạt chất trong Tea Tree Oil có khả năng giết chết các loại vi khuẩn gây mụn, gây nấm và giúp giảm phản ứng dị ứng da. Dựa vào những công dụng này mà Tea Tree Oil được sử dụng phổ biến trong ngành mỹ phẩm, làm đẹp, nhất là trong các sản phẩm trị mụn.
Ester là gì?
Một ester là một hợp chất hữu cơ kết quả từ phản ứng giữa oxoacid và hợp chất hydroxyl (như rượu và phenol). Nó tương tự như một axit cacboxylic có nguyên tử hydro thuộc nhóm -COOH được thay thế bằng nhóm alkyl hoặc aryl.
Ester là các phân tử phân cực, so với các axit cacboxylic có trọng lượng tương tự thì điểm sôi của ester thấp hơn vì giữa chúng không thể hình thành liên kết hydro. Thay vào đó, chúng có thể hình thành liên kết hydro giữa các nguyên tử oxy và nguyên tử hydro của các phân tử nước. Do đó, ester ít tan trong nước.

Khác với axit cacboxylic tương ứng thường có mùi khó chịu, ester có mùi trái cây. Những ester này là lý do cho mùi của nhiều loại trái cây (chẳng hạn dứa có mùi từ ethyl ethanoate) nên ngành công nghiệp thực phẩm từ lâu đã sử dụng ester để tạo mùi.
Cần biết là, ester chúng ta sử dụng trong một sản phẩm cụ thể để có mùi trái cây mong muốn không phải là hợp chất có trong nguồn tự nhiên. Tuy nhiên, ester có thể tạo ra hương vị và mùi tương tự. Hơn nữa, mặc dù hợp chất không giống như trong trái cây tự nhiên, nhưng không nguy hiểm khi ăn các sản phẩm thực phẩm này vì cấu trúc của ester gần giống với hợp chất tự nhiên.
Có trọng lượng phân tử thấp và có mùi thơm, este thường được sử dụng làm nước hoa, các loại tinh dầu và pheromone. Este còn là dung môi tốt cho các chất dẻo, chất hóa dẻo, nhựa cây và sơn mài. Đây cũng đồng thời là một trong chất bôi trơn tổng hợp lớn nhất trên thị trường.
Điều chế sản xuất Ester
Este được điều chế theo nhiều phương pháp phân theo từng loại este: Este của ancol, este của phenol, este không no.
Este của ancol
Phương pháp thường dùng để điều chế este của ancol là tiến hành phản ứng este hóa, đun hồi lưu ancol và axit hữu cơ, có H2SO4 đặc làm xúc tác.

Phản ứng este hóa là phản ứng thuận nghịch. Để tăng hiệu suất phản ứng thuận:
-
Tăng nồng độ chất tham gia;
-
Giảm nồng độ sản phẩm bằng cách: Đun nóng để este bay hơi hoặc dùng H2SO4 đặc để hút nước. H2SO4 đặc vừa là xúc tác, vừa làm tăng hiệu suất phản ứng.
Este của phenol
Các este chứa gốc phenyl không điều chế được bằng phản ứng của axit cacboxylic với phenol mà phải dùng anhidrit axit hoặc clorua axit tác dụng với phenol.
Điều chế một số este không no
RCOOH + HC=CH → RCOOCH=CH2
Cơ chế hoạt động của Ester
Este có trọng lượng phân tử thấp, cấu tạo không phức tạp lắm và rất dễ chế tạo bằng phương pháp tổng hợp. Hợp chất này dễ bay hơi, chúng liên tục phát tán vào không khí làm cho mũi của chúng ta nhận biết được mùi thơm của hoa quả.
Sunflower oil là gì?
Sunflower oil (hay còn gọi dầu hạt hướng dương, dầu hướng dương) chứa hàm lượng axit linoleic 60% (trung bình) có khả năng giúp bổ sung, tăng cường và làm dịu da. Bên cạnh đó, dầu hướng dương còn chứa các axit béo có lợi khác bao gồm oleic, palmitic, stearic và một lượng nhỏ axit linolenic omega-3. Đây đều là những chất cần thiết cho sức khỏe của làn da.
Sunflower oil mang lại nhiều tác dụng cho mọi làn da, đặc biệt thích hợp đối với làn da khô, da mất nước hoặc làn da bị tổn thương do môi trường. Hàm lượng axit linoleic trong dầu hướng dương giúp da tổng hợp lipid (chất béo), trong đó có ceramides; đồng thời còn giúp sửa chữa hàng rào của nó và dẫn đến làn da mịn màng, khỏe mạnh hơn.

Ngoài ra, từ lâu các nhà sản xuất còn dùng sunflower oil để giảm các dấu hiệu căng thẳng hoặc kích ứng da. Các trường hợp trẻ sơ sinh bị viêm da dị ứng thì dầu hướng dương bôi có thể được dùng thay thế cho các loại steroid tại chỗ để kiểm soát chứng rối loạn da này.
Có thể nói, dầu hướng dương là nguồn cung cấp vitamin E tuyệt vời, giàu chất dinh dưỡng lẫn chất chống oxy hóa. Các vấn đề chăm sóc da như mụn trứng cá, viêm, đỏ và kích ứng da đều có thể được giải quyết bằng loại dầu này
Sunflower oil tinh luyện có màu trong, hơi ngả sang màu hổ phách, vị trung tính và mùi hơi béo. Các chất béo trung tính trong dầu hướng dương có tỷ lệ khác nhau, cụ thể:
-
Axit linoleic (omega-6 không bão hòa đa) chiếm 59%;
-
Axit oleic (omega-9 không bão hòa đơn) chiếm 30%;
-
Axit stearic (bão hòa) chiếm 6%;
-
Axit palmitic (bão hòa) chiếm 5%.
Ngoài ra, sunflower oil còn chứa các thành phần khác bao gồm polyphenol, terpenoids, squalene và lượng lớn vitamin E. Có thể phân loại sunflower oil như sau:
-
Loại dầu hướng dương tinh luyện: Được sản xuất bằng cách chiết xuất dung môi, khử keo và tẩy trắng nên làm cho dầu có tính chất ổn định và thích hợp cho việc nấu ở nhiệt độ cao. Đáng chú là với loại tinh luyện này, một số chất dinh dưỡng, hương vị và màu sắc sẽ giảm. Khi gặp nhiệt độ cao, một số axit béo không bão hòa đa thậm chí chuyển hóa thành chất béo chuyển hóa.
-
Loại dầu hướng dương chưa tinh luyện: So với loại đã tinh luyện thì loại dầu này dễ bị oxy hóa, kém bền nhiệt hơn nhưng ưu điểm là giữ lại được nhiều chất dinh dưỡng, hương vị và màu sắc ban đầu.

Điều chế sản xuất
Người ta dùng phương pháp ép trực tiếp hoặc sử dụng dung môi hóa học để sản xuất ra sunflower oil từ hạt của loài hoa hướng dương. Điểm bốc khói của dầu hướng dương là 225 độ C, thấp hơn so với dầu đậu nành.
Sản phẩm liên quan










