Nano Collagen
Phân loại:
Thành phần khác
Mô tả:
Nano Collagen là gì?
Nano Collagen, về bản chất cơ bản chính là sự kết hợp giữa collagen và công nghệ nano.
Chúng ta đều biết, collagen là một loại protein dạng sợi, là thành phần cấu trúc chính của các mô liên kết. Khắp nhiều bộ phận trên cơ thể chúng ta đều có thể tìm thấy collagen như hạ bì của da, gân, mạch máu, xương và khớp... Tuy nhiên, khi tuổi tác ngày càng cao, cùng với tác động của các yếu tố môi trường khiến việc tăng sinh collagen ngày càng giảm. Collagen mới chậm hình thành hơn, da kém đàn hồi hơn khiến làn da xuất hiện nếp nhăn ngày càng nhiều.

Về cấu trúc, phân tử collagen gồm ba chuỗi polypeptide với hơn 1.000 acid amin trong mỗi chuỗi. Do trọng lượng phân tử và kích thước khá lớn khiến việc hấp thu và phát huy hiệu quả của collagen ít nhiều bị ảnh hưởng. Chính vì thế, các nhà nghiên cứu đã tìm ra công thức nano của collagen, gọi là nano collagen với kích thước các hạt nhỏ hơn, đồng nhất hơn (kích thước vào khoảng 10- 1000nm), cùng với khả năng hấp thu tốt và rộng hơn. Nano collagen có ưu điểm là vượt qua các trở ngại của collagen nên thành phần này rất được ưa chuộng trong lĩnh vực làm đẹp, chăm sóc da và cơ thể.
Với liều dùng chỉ bằng 60% collagen thường, nano collagen mang lại nhiều tác dụng đáng kể, bao gồm tăng khả năng sống sót của tế bào mô liên kết ở da người bình thường: Cho kết quả tương đương, kiểm soát men MMPs tốt hơn cũng như có tỷ lệ tổng hợp Procollagen type I của tế bào mô liên kết dưới da người bình thường tốt hơn.
Hiện nay, các sản phẩm nano collagen rất phổ biến, được sử dụng như một loại thực phẩm bổ sung giúp cải thiện sức khỏe cho làn da, hạn chế hình thành nếp nhăn, giúp hệ cơ xương khớp chắc khỏe, làm chậm quá trình lão hóa ở phụ nữ.
Điều chế sản xuất
Hầu hết nano collagen đều được phân tách bằng phương pháp thủy phân. Da hoặc vảy cá từ nguyên liệu thô ban đầu sẽ được loại bỏ calci và chất béo, sau đó chúng sẽ trải qua bốn bước thủy phân, tiếp theo sẽ được lọc, khử mùi, khử màu rồi mới khử trùng, sấy khô và đóng gói.

Cơ chế hoạt động
Nano collagen sau khi vào trong cơ thể sẽ trải qua bốn bước như sau:
-
Bước 1: Nano collagen được tiêu hóa bởi các enzyme dưới dạng Oligopeptide trong dạ dày và ruột non.
-
Bước 2: Oligopeptide được tiêu hóa và hấp thụ trong ruột non dưới dạng các amino acid và peptide nhờ tác dụng của các enzyme Dipeptidase và Aminopoly-peptidase.
-
Bước 3: Dạng peptide được hấp thụ bởi peptidase tạo thành Amino acid trong tế bào chất.
-
Bước 4: Amino acid trong tế bào chất được chuyển vào các mao mạch trong gan.
Dược động học:
Dược lực học:
Xem thêm
Sucrose là gì?
Sucrose còn được gọi là saccharose, là sản phẩm được tách ra từ cây mía và củ cải. Quy trình tiếp theo sẽ tiến hành làm tinh khiết và kết tinh, có vai trò cung cấp năng lượng cho cơ thể, có nhiều trong mía. Ở một số loại thực vật tự nhiên khác như thốt nốt, mật ong, trong một số loại trái cây người ta cũng tìm thấy sucrose. Nguồn gốc hình thành sucrose từ trong thực vật chứ không phải từ các sinh vật khác.
Sucrose là một disaccarit được tạo thành từ một là glucose và fructose. Cả hai loại đường liên kết với nhau bởi liên kết 1,2 glucoside. Sucrose còn có nhiều tên gọi khác nhau: Sucroza, saccarôzơ, đường kính, đường thốt nốt, đường mía, đường ăn, đường phèn, đường cát, sucrose pure,…
Công thức hóa học của Sucrose là C12H22O11.
Cấu tạo phân tử

Trong phân tử sucrose gốc – glucose và gốc – fructose liên kết với nhau qua nguyên tử O giữa C1 của glucose và C2 của fructose (C1 – O – C2).
Không còn nhóm OH hemiaxetal không có khả năng mở vòng.
Điều chế sản xuất
Vì sucrose có đột ngọt cao nên dùng làm chất tạo ngọt thực phẩm phổ biến nhất các tổ hợp của các thành phần chức năng. Có nơi người ta đã thay thế nó bằng các chất tạo ngọt khác như các si-rô fructose như ở Mỹ.
Loại đường được đánh giá là quan trọng nhất chính là sucrose, trong thực vật và có thể tìm thấy trong nhựa libe. Loại đường này được tách ra từ mía đường hay củ cải đường quy trình sau đó là làm tinh khiết và kết tinh. Ngoài ra việc sản xuất sucrose ở quy mô thương mại khác còn có lúa mì ngọt, Acer saccharum và thốt nốt (Borassus spp.).
Trong chế biến thực phẩm, sucrose do nó vừa là chất tạo ngọt vừa là chất dinh dưỡng. Sucrose là thành phần quan trọng trong nhiều loại thực phẩm như bánh bích quy, kẹo ngọt, kem và nước trái cây, hỗ trợ trong bảo quản thực phẩm.
Cơ chế hoạt động
Sacrosidase là một [beta]-fructofuranoside fructohydrolase thủy phân sucrose. Không giống như sucename-isomaltase ở ruột người, sucrose không có hoạt tính với oligosacarit chứa 1,6 liên kết glucosyl.
Sucrose là 1 disaccharide nên nó phải được chia nhỏ trước khi cơ thể tiêu hóa. Nhờ enzym trong miệng phân hủy 1 phần đường sucrose thành glucose và fructose. Việc tiêu hóa đường chủ yếu được diễn ra ở ruột non. Khi Enzyme sucrase được tiết ra bởi lớp niêm mạc ruột non sẽ giúp phân tách sucrose thành glucose, fructose và hấp thụ vào máu.
Lumiskin là gì?
Lumiskin hoạt động tốt thông qua các thụ thể đối kháng a-adrenergic và điều hòa dòng canxi. Lumiskin là một giải pháp của diacetyl-boldine và triglyceride caprylic/capric ức chế hoạt động của tyrosinase. Nó được sử dụng để làm sáng da. Sản phẩm này được khuyến khích sử dụng trong các sản phẩm làm sáng da. Lumiskin được khuyến khích sử dụng trong nhũ tương, xà phòng và các sản phẩm trang điểm có đặc tính làm sáng hoặc làm trắng da.
Lumiskin có đặc tính làm sáng hoặc làm trắng da
Điều chế sản xuất Lumiskin
Lumiskin là một giải pháp của diacetyl-boldine và triglyceride caprylic/capric ức chế hoạt động của tyrosinase.
Cơ chế hoạt động
Lumiskin hoạt động giống như bất kỳ sản phẩm làm sáng da nào khác. Về cơ bản, tác dụng của nó là khi bạn thoa nó lên phần da có vấn đề, nó sẽ loại bỏ các đốm đen. Nó sử dụng một thành phần hoạt chất được gọi là Diacetyl Boldine được biết là làm giảm tyrosinase. Điều này có thể chống lại tác hại của ánh nắng mặt trời cũng như các vấn đề liên quan đến tuổi tác.
Phân tử dẫn xuất thực vật ảnh hưởng đến quá trình hình thành hắc tố để giảm sự tổng hợp melanin và đốm nâu do tia UV gây ra.
Palm oil là gì?
Palm oil (dầu cọ) là thành phần được chiết xuất từ thịt (cùi) của quả cọ bằng phương pháp ép lạnh. Như chúng ta đều biết, quả cọ từ lâu là nguyên liệu lý tưởng được sử dụng trong ngành chế biến thực phẩm và mỹ phẩm bởi công dụng tạo độ đặc cho các đồ ăn đóng hộp, kéo dài hạn sử dụng của thực phẩm cũng như giúp cho bánh nướng giữ được độ giòn tan...
Trong mỹ phẩm, dầu cọ được đánh giá cao vì có khả năng giữ ẩm, giúp làm mềm, tăng lượng nước trong da và giữ cho da luôn mịn màng. Rất nhiều sản phẩm chăm sóc cá nhân bạn dùng hàng ngày có chứa Palm oil như xà phòng, dầu gội, kem cạo râu, sữa tắm và nhiều loại mỹ phẩm khác. Nếu nhìn thấy các chất như "elaeis guineensis oil", "elaeis guineensis butter", "hydrogenated palm", "oleine de palme", "sodiul palmate"... trong bảng công thức sản phẩm thì có nghĩa là bạn đang tiêu thụ các sản phẩm có chứa dầu cọ.

Theo các nhà khoa học, dầu cọ đỏ (loại dầu thô, chưa qua xử lý) sẽ mang lại nhiều lợi ích cho cơ thể nhờ các loại acid béo trong dầu; đặc biệt có lợi cho phụ nữ mãn kinh, mang thai và chống loãng xương. Dầu cọ đỏ chứa rất nhiều vitamin A gấp 15 lần so với cà rốt, mang lại rất nhiều tác dụng cho da như dưỡng ẩm, giữ ẩm, chống nhăn và đẩy mạnh quá trình sản xuất melanin - giúp da chống lại tác hại của tia cực tím.
Trên thị trường, hiện người ta khá ưa chuộng các sản phẩm dầu gội chiết xuất từ dầu cọ do nó không chứa silicone, nhựa than hay paraben như nhiều sản phẩm khác. Tóc được chăm sóc tốt hơn, trở nên bóng mượt sau thời gian sử dụng. Dầu cọ cũng được dùng như một loại thuốc ủ tóc bởi chức năng phục hồi tóc bị khô, gãy và rụng, đặc biệt là trong tiết hè nắng nóng.
Điều chế sản xuất Palm oil
Đầu tiên, người ta sẽ vận chuyển nguyên liệu thô đến nhà máy, tiếp đó sẽ bắt đầu chu trình sản xuất.
Sau khi dầu được tách tại cối xay, dầu cọ thô được tiệt trùng tại bình áp suất lớn, tẩy màu và tách khỏi hỗn hợp lỏng gồm hỗn hợp nhiều dầu. Tiếp theo, làm sạch hỗn hợp này trong một bình lớn, tại đó lượng dầu được lấy ra liên tục. Sau quá trình này ta thu được dầu cọ thô, từ đây dầu thô được tinh chế bằng 2 quá trình khác nhau:
-
Quá trình vật lý: Dầu thô tiếp tục được tẩy trắng, sau đó là quá trình tách acid và tách mùi. Kết quả của quá trình biến đổi vật lý, ta thu được dầu cọ đã được tẩy trắng không mùi và không chứa acid béo.
-
Quá trình kiềm: Đầu tiên, dầu thô được trung hòa với kiềm. Hỗn hợp sau phản ứng trung hòa này được tẩy trắng và tẩy mùi, sản phẩm thu được là dầu cọ. Sản phẩm phụ là xà phòng được tổng hợp từ phần loại ra trong quá trình trung hòa với kiềm.
Cơ chế hoạt động của Palm oil
Tất cả calorie của dầu cọ đều đến từ chất béo. Sự phân hủy axit béo của nó là 50% axit béo bão hòa, 40% axit béo không bão hòa đơn và 10% axit béo không bão hòa đa.
Trong dầu cọ, axit palmitic là loại chất béo bão hòa chính, chiếm 44% lượng calorie. Bên cạnh đó, dầu cọ cũng chứa khá nhiều axit oleic và một ít axit linoleic cùng axit stearic.
Sắc tố đỏ cam của dầu bắt nguồn từ các chất chống oxy hóa được gọi là carotenoid, trong đó bao gồm beta-carotene, mà cơ thể bạn có thể chuyển hóa thành vitamin A.
Peracetic acid là gì?
Chất hóa học Peracetic acid còn được gọi là Acid peracetic, Acid peroxyacetic, PAA… có công thức hóa học là CH3CO3H. Tên thương mại của Peracetic acid với vai trò như một chất kháng khuẩn là Nu-Cidex.
Đây là một chất lỏng không màu, mùi nồng cay với công dụng như một chất có khả năng oxy hóa cực mạnh. Peracetic acid tạo thành một trạng thái cân bằng giữa chất Acid acetic (CH3COOH) và Hydrogen peroxide (H2O2), dễ phân tán và xử lý các màng sinh học, tác dụng nhanh ngay cả ở nhiệt độ thường, có khả năng tác động hiệu quả với phổ rộng vi sinh vật như vi khuẩn, nấm mốc.
Peracetic acid có những ưu điểm như không bị độ cứng ảnh hưởng, không để lại cặn trên thiết bị và không làm thay đổi hương vị, màu sắc của thực phẩm cần xử lý. Tuy nhiên, thành phần này cũng có nhược điểm như nồng độ của Peracetic acid dễ bị giảm sút hơn các chất khử trùng khác và dễ bay hơi ở ngoài không khí, có khả năng ăn mòn các loại kim loại như kẽm, thép, đồng trừ inox. Đặc biệt, khi được pha loãng, Peracetic acid không có tính ổn định cao.

Điều chế sản xuất
Peracetic acid được sản xuất công nghiệp bằng quá trình tự oxy hóa Acetaldehyde hay được hình thành khi xử lý Acid acetic bằng Hydrogen peroxide với chất xúc tác Acid mạnh.
Acetyl clorua và Anhydrit axetic có thể được sử dụng để tạo ra dung dịch Acid có hàm lượng nước thấp hơn.
Peracetic acid được tạo ra tại chỗ bởi một số chất tẩy giặt qua phản ứng của Tetraacetylethylenediamine (TAED) với sự có mặt của dung dịch Hydrogen peroxide kiềm.
Peracetic acid cũng được hình thành tự nhiên trong môi trường thông qua một loạt các phản ứng quang hóa liên quan đến Formaldehyde và các gốc quang oxy hóa.
Cơ chế hoạt động của Peracetic acid
Hỗn hợp ổn định, cân bằng giữa Peracetic acid 5%, nước, Acid axetic và Hydro peroxide được xem là một trong những chất diệt khuẩn mạnh nhất. Hoạt động của Peracetic acid chống lại một loạt các vi sinh vật bao gồm vi khuẩn hiếu khí và kỵ khí, ngoài ra còn có các bào tử vi khuẩn, nấm mốc, nấm men và tảo.
ODA White là gì?
ODA White là Axit octadecenedioic ra đời bởi vì các nhà khoa học đang tìm kiếm một giải pháp thay thế hiệu quả cao hơn cho axit azelaic, một hoạt chất nổi tiếng được sử dụng cho mụn trứng cá, bệnh trứng cá đỏ và tăng sắc tố.
Axit azelaic được tìm thấy trong ngũ cốc, lúa mạch và lúa mạch đen, thường được sử dụng do chi phí thấp, mặc dù thực tế là các tác dụng phụ có thể bao gồm châm chích, bỏng rát, ngứa, ngứa ran, khô hoặc bong tróc da - có thể do nồng độ cao cần thiết (lên đến 20%) để trị mụn chẳng hạn.
Công thức hoá học của ODA White
O.D.A. White là thành phần làm sáng da với cơ chế hoạt động mới ức chế toàn bộ con đường chuyển hóa tổng hợp melanin từ nhân của tế bào hắc tố, phù hợp để điều trị các rối loạn sắc tố da như tàn nhang, nám, tăng sắc tố và da tối màu.
Điều chế sản xuất
ODA White có nguồn gốc từ hạt hướng dương và rất giống với axit Azeliac về cấu trúc phân tử của nó.
Axit octadecenedioic. O.D.A white hoạt động như một chất dưỡng da, làm sáng và trắng da, thu được bằng cách lên men sinh học từ axit oleic tự nhiên và thực vật.
Cơ chế hoạt động
Không giống như hầu hết các chất làm sáng da khác, ODA White không hoạt động bằng cách ức chế hoạt động của tyrosinase mà hoạt động bằng cách liên kết với thụ thể kích hoạt chất tăng sinh peroxisome (PPAR). Kết quả là, nó có thể thúc đẩy sự biệt hóa của các tế bào sừng, các tế bào chính trong lớp biểu bì.
ODA White được biết là có hoạt tính gấp 50 lần so với axit azelaic trong việc ức chế sự phát triển của vi khuẩn propionibacterium.
Adipic Acid là gì?
Adipic Acid (hay acid hexanedioic) là hợp chất hữu cơ, công thức hóa học là (CH2)4(COOH)2.
Trong công nghiệp, Adipic Acid là acid dicarboxylic quan trọng nhất. Adipic Acid tồn tại ở dạng bột tinh thể màu trắng, mỗi năm được sản xuất vào khoảng 2,5 tỷ kg.

Chủ yếu là tiền chất để sản xuất nylon, Adipic Acid hiếm khi xuất hiện trong tự nhiên. Trong đời sống, Adipic Acid là phụ gia thực phẩm được sản xuất với số E là E355.
Một số tên gọi khác của Adipic Acid là:
-
Axit Hexanedioic;
-
Axit adipic Axit;
-
Butan-1,4-dicarboxylic Axit;
-
Hexan-1,6-dioic axit;
-
1,4-butanedicarboxylic.
Adipic Acid có khả năng tham gia phản ứng trùng ngưng.
Điều chế sản xuất Adipic Acid
Quá trình hydrocarboxyl hóa tiến hành như sau:
CH 2 = CH − CH = CH 2 + 2 CO + 2 H 2 O → HO 2 C (CH 2 ) 4 CO 2 H
Một phương pháp khác là phân cắt oxy hóa cyclohexene bằng hydro peroxide, thải ra nước.
Trong lịch sử, Adipic Acid được điều chế bằng cách oxy hóa các chất béo khác nhau.
Cordycepin là gì?
Cordycepin là một dược chất có cấu trúc gồm nhân purin liên kết với đường ribofuranose bằng liên kết β – N9 – glucosid, công thức phân tử là C10H13N5O3 và danh pháp khoa học là 9-(3-deoxy-β-D ribofuranosyl) adenin. Theo nghiên cứu khoa học, Cordycepin có màu vàng nhạt, tác dụng ức chế sự phát triển của nhiều vi khuẩn và virus.

Hoạt chất Cordycepin được tìm thấy ở nhiều loài nấm khác nhau, nhưng chủ yếu được nhắc đến trong đông trùng hạ thảo. Cordycepin có cấu trúc hóa học tương tự Adenosine - một loại nucleoside tham gia cấu tạo nên RNA, tuy nhiên chỉ khác là ở vị trí 3’ của Cordycepin là deoxy(-H) còn Adenosine là hydroxyl(–OH). Nhờ đó, Cordycepin có thể can thiệp vào nhiều quá trình sinh hóa và phân tử khác nhau trong tế bào, như ức chế con đường sinh tổng hợp purin, gây kết thúc sớm quá trình phiên mã (do Cordycepin không có nhóm -OH ở vị trí 3′, đóng vai trò quan trọng trong kéo dài mạch RNA); đồng thời can thiệp vào con đường truyền tín hiệu mTOR, gây ức chế quá trình dịch mã, ức chế tăng sinh và phát triển tế bào, giúp ngăn ngừa ung thư.
Cordycepin được đánh giá là một hoạt chất có hoạt tính chống lại ung thư mạnh mẽ trong số các hợp chất chống ung thư tự nhiên. Điều này được nghiên cứu khá kỹ trong nhiều loại ung thư, điển hình như u thần kinh đệm, ung thư miệng, vú, phổi, ung thư biểu mô tế bào gan, bàng quang, tuyến tiền liệt, đại trực tràng, tinh hoàn, ung thư tế bào hắc tố và ung thư tế bào máu thông qua khả năng điều chỉnh nhiều con đường tín hiệu liên quan đến sự tăng sinh tế bào, khả năng sống của tế bào, tế bào chết theo chương trình (apoptosis), sự xâm lấn (invasion), sự di căn (metastasis), sự hình thành mạch máu (angiogenesis) và miễn dịch ung thư.
Bên cạnh đó, Cordycepin còn cho thấy khả năng giúp chống viêm, chống oxy hóa, bảo vệ thần kinh, bảo vệ tim mạch, trị hen suyễn, tiểu đường, máu nhiễm mỡ, chống loãng xương, chống trầm cảm, xơ mô kẽ thận, bảo vệ da và kháng virus…
Tuy mang lại nhiều lợi ích cho sức khỏe con người nhưng nhiều bài báo cũng đã cho thấy Cordycepin có thể gây độc (thử nghiệm trên chuột) đối với ngay cả các tế bào hồng cầu khỏe mạnh; làm suy yếu gan và thận; dễ mất hoạt tính dưới điều kiện acid dạ dày; thời gian bán hủy ngắn và dễ bị đào thải nhanh chóng,... Tất cả những điều này ngụ ý rằng Cordycepin có thể không thực sự đem lại hiệu quả nếu được hấp thụ thông qua đường uống.

Điều chế sản xuất Cordycepin
Cordycepin là nucleoside được phân lập từ đông trùng hạ thảo. Đây là một chất kháng sinh chỉ có trong tự nhiên và không thể bào chế được nên mang nhiều lợi thế hơn kháng sinh nhân tạo vì kháng sinh nhân tạo thường sẽ để lại tác dụng phụ không tốt cho cơ thể.
Cơ chế hoạt động của Cordycepin
Theo nghiên cứu cho thấy, Cordycepin là dược chất quý hiếm trong y học, có khả năng cản trở sự sản sinh của các RNA - hoạt chất liên quan trực tiếp gây ra bệnh ung thư.
Bên cạnh đó, dược chất Cordycepin còn ức chế sự tổng hợp các nucleic acid của tế bào u bướu, ngăn chặn quá trình hình thành GMP, ngăn ngừa nguy cơ mắc bệnh ung thư.
Polyglyceryl - 2 Triisostearate là gì?
Polyglyceryl - 2 Triisostearate là một chất diester của axit isostearic và diglycerine. Nó thuộc về một nhóm được gọi là este axit béo polyglyceryl. Đây là một chất lỏng có hiệu quả trong việc phân tán sắc tố vô cơ, nên thường được sử dụng trong các mỹ phẩm có màu.
Công thức hóa học của Polyglyceryl - 2 Triisostearate
Điều chế sản xuất Polyglyceryl-2 Triisostearate
Axit béo có trong dầu dừa và dầu cọ được sử dụng trong nhiều sản phẩm mỹ phẩm. Là chất lỏng sền sệt màu hơi vàng, có mùi thơm đặc trưng của axit béo.
Cơ chế hoạt động
Một chất nhũ hóa hiệu quả cho các công thức nước trong dầu
Polyglyceryl - 2 Triisostearate đặc biệt nhẹ nhàng trên da và dịu nhẹ, lý tưởng cho các sản phẩm dành cho da nhạy cảm. Chất nhũ hóa đặc biệt linh hoạt trong quá trình sản xuất, có thể sử dụng được cả trong các công thức của Quy trình nóng và lạnh.
Khả năng phân tán
Polyglyceryl- 2 Triisostearate có khả năng phân tán vượt trội của các chất màu vô cơ; khả năng tương thích tốt với các loại dầu và sáp; độ ổn định oxy hóa cao.
Polyethylene glycol 400 là gì?
Polyetylen glycol (PEG) là sản phẩm được tạo ra từ oxit etylen ngưng tụ và nước có thể chứa nhiều dẫn xuất khác nhau và có nhiều chức năng khác nhau. Có nhiều loại PEG có tính ưa nước. PEG được sử dụng phổ biến như chất tăng cường độ thẩm thấu và được sử dụng nhiều trong các chế phẩm da liễu tại chỗ. PEG, cùng với nhiều dẫn xuất không ion của chúng, được sử dụng rộng rãi trong các sản phẩm mỹ phẩm như chất hoạt động bề mặt, chất nhũ hóa, chất làm sạch, chất giữ ẩm và chất dưỡng da.

Polyetylen glycol 400 (PEG 400) là loại polyetylen glycol có trọng lượng phân tử thấp với độc tính ở mức độ thấp. PEG rất ưa nước, vì vậy là một thành phần hữu ích trong công thức thuốc để tăng khả năng hòa tan và sinh khả dụng của các loại thuốc khó tan trong nước. PEG được sử dụng trong các dung dịch nhãn khoa để giảm bỏng, kích ứng và/hoặc khó chịu sau tình trạng khô mắt. PEG "400" chỉ ra rằng trọng lượng phân tử trung bình của PEG cụ thể là 400.
PEGyl hóa xảy ra khi PEG được gắn với nhiều loại thuốc protein, cho phép độ hòa tan cao hơn đối với các loại thuốc đã chọn. Ngoài ra, PEG như một loại thuốc nhuận tràng.
Điều chế sản xuất
Polyethylene glycol 400 (PEG) được sản xuất bởi phản ứng giữa nước với ethylene oxide, hoặc với ethylene glycol đồng thời với các oligomer của ethylene glycol. Phản ứng được xúc tác bởi các chất xúc tác cơ bản hay acid. Cả ethylene glycol và oligomer ưa chuộng hơn so với nước, vì có thể cho phép tạo ra các polymer với sự phân tán trọng lượng phân tử ở phạm vi hẹp. Độ dài của chuỗi polymer phụ thuộc tỷ lệ của những chất tương tác.
HOCH2CH2OH + n(CH2CH2O) → HO(CH2CH2O)n+1H
Tùy theo loại xúc tác tạo ra cơ chế của quá trình polymer hóa là cationic hoặc anionic. Cơ chế anionic được đánh giá tốt hơn vì có thể thu được PEG có độ phân tán thấp. Polymer hóa ethylene oxide là một quá trình tỏa nhiệt. Khi gia nhiệt tăng cao hay làm nhiễm bẩn ethylene oxide bởi chất xúc tác như kiềm hay oxide kim loại có thể phá hủy quá trình polymer hóa đồng thời có thể gây cháy nổ sau vài tiếng.
Cả Polyethylene oxide và polyethylene glycol cao phân tử tổng hợp do quá trình trùng hợp tạo nhũ. Phản ứng xúc tác với các muối hữu cơ của magie, canxi, nhôm. Muốn chặn sự kết tụ của các polymer có thể đưa vào một số phụ gia dạng chelate như dimethylglyoxime. Các chất xúc tác kiềm như Na2CO3, NaOH, KOH, được dùng điều chế các polyethylene có khối lượng phân tử nhỏ.
Cơ chế hoạt động
Polyethylene glycol 400 (PEG), tùy thuộc vào trọng lượng phân tử, có nhiều cơ chế hoạt động khác nhau. Đối với mục đích của PEG-400, cơ chế hoạt động trên các mô mắt sẽ là trọng tâm chính của cuộc thảo luận.
PEG-400 được coi là chất đo nước mắt, hoặc chất bôi trơn mắt tổng hợp giúp cải thiện một hoặc nhiều thành phần của màng lệ bằng cách tăng lượng nước mắt và độ ổn định và bằng cách bảo vệ bề mặt mắt chống lại sự hút ẩm.
Hydroxypropyl-guar (HPG) được sử dụng cùng với polyethylene glycol 400 (PEG) và propylene glycol (PG) như một chất tạo keo phù hợp với các bất thường của màng nước mắt và các bất thường hiện có trên bề mặt mắt.
PEG cung cấp chất bôi trơn và hoạt động như một chất hoạt động bề mặt bằng cách phủ lên mắt và tương tác với propylene glycol và các dung dịch khác giúp hoạt động như chất hoạt động bề mặt trên niêm mạc mắt. Điều này cho phép tạo ra các hiệu ứng nhẹ nhàng và lâu dài.
Các nghiên cứu gần đây liên quan đến phân phối thuốc dạng hạt nano đã chứng minh rằng PEG có thể đạt được sự phân phối thuốc bền vững. Việc đưa thuốc đến bề mặt niêm mạc là một thách thức đáng kể do sự hiện diện của lớp chất nhầy bảo vệ có tác dụng bẫy và nhanh chóng loại bỏ các phần tử lạ.
Các hạt nano được thiết kế để nhanh chóng vượt qua các rào cản niêm mạc (các hạt xuyên qua chất nhầy, “MPP”) đã được chứng minh là có triển vọng tăng cường phân phối thuốc và hiệu quả trên các bề mặt niêm mạc khác nhau. Các hạt xuyên qua chất nhầy được phủ nhiều bằng polyethylene glycol (PEG), bảo vệ lõi hạt nano khỏi sự kết dính với chất nhầy.
Polyetylen glycol, khi ở dạng tự do trong dung dịch, cũng có thể chứng tỏ lực hút đối với bề mặt của các loại túi, tế bào hoặc đại phân tử khác nhau, dẫn đến sự hấp phụ polyme và sau đó là lực đẩy hoặc lực hút, thông qua cầu nối, của các bề mặt hoặc túi - một lần nữa tùy thuộc vào nhiệt độ, trọng lượng phân tử và nồng độ của polyetylen glycol. Polyethylene glycol trọng lượng phân tử thấp (chẳng hạn như PEG-400) thường thúc đẩy các tế bào hoặc túi bám vào (lực hút cạn kiệt), polyethylene glycol trọng lượng phân tử cao khiến chúng đẩy lùi.
Nitrous acid là gì?
Nitrous acid (công thức phân tử HNO2), một hợp chất không bền, có tính axit yếu, chỉ được điều chế ở dạng dung dịch loãng, nguội. Nó rất hữu ích trong hóa học trong việc chuyển đổi các amin thành các hợp chất diazonium, được sử dụng trong sản xuất thuốc nhuộm azo. Nó thường được điều chế bằng cách axit hóa dung dịch của một trong các muối của nó, các muối nitrit, bền hơn.
Nitrous acid có công thức phân tử HNO2
Nitrous acid phân hủy thành oxit nitric, NO và axit nitric, HNO3. Nó có thể phản ứng như một chất oxy hóa hoặc chất khử; nghĩa là, nguyên tử nitơ của nó có thể được hoặc mất electron trong phản ứng với các chất khác. Axit nitơ, ví dụ, oxy hóa ion iotua thành iot nguyên tố nhưng khử brom thành ion bromua.
Nitrous acid là một axit yếu và đơn chức chỉ được biết trong dung dịch, ở pha khí và ở dạng nitrit (NO−2) muối. Axit nitơ được sử dụng để tạo ra muối diazonium từ các amin. Các muối diazonium tạo thành là thuốc thử trong phản ứng ghép nối azo để tạo ra thuốc nhuộm azo.
Tính chất hóa học của axit nitơ - HNO2
Nó có tính axit mạnh, cực kỳ dễ bay hơi và bốc khói dày đặc; sôi ở nhiệt độ thấp 82oC và khối lượng riêng là 1,45.
Ở trạng thái hơi, axit nitơ không thay đổi do tác dụng của nhiệt, nhưng khi trộn với nước sẽ xảy ra hiện tượng sủi bọt cùng với sự phát triển của khí nitơ.
Axit nitơ ở trạng thái bốc khói là hoàn toàn không mong muốn nhưng hỗ trợ quá trình đốt cháy phốt pho hoặc than củi, khi chúng được đưa vào nó ở trạng thái cháy.
Sự phân hủy
Nitrous acid dạng khí, hiếm khi gặp, phân hủy thành nitơ đioxit, oxit nitric và nước:
2 HNO2 → NO2 + NO + H2O
Trong các dung dịch ấm hoặc đậm đặc, phản ứng tổng thể tạo ra axit nitric, nước và oxit nitric:
3 HNO2 → HNO3 + 2 NO + H2O
Nitrous acid sau đó có thể bị oxy hóa lại trong không khí thành axit nitric, tạo ra phản ứng tổng thể:
2 HNO2 + O2 → 2 HNO3
Quá trình oxy hóa khử
Với ion I− và Fe2 +, NO được tạo thành:
2 HNO2 + 2 KI + 2 H2SO4 → I2 + 2 NO + 2 H2O + 2 K2SO4
2 HNO2 + 2 FeSO4 + 2 H2SO4 → Fe2 (SO4) 3 + 2 NO + 2 H2O + K2SO4
Với ion Sn2 +, N2O được tạo thành:
2 HNO2 + 6 HCl + 2 SnCl2 → 2 SnCl4 + N2O + 3 H2O + 2 KCl
Với khí SO2, NH2OH được tạo thành:
2 HNO2 + 6 H2O + 4 SO2 → 3 H2SO4 + K2SO4 + 2 NH2OH
Với Zn trong dung dịch kiềm, NH3 được tạo thành:
5 H2O + KNO2 + 3 Zn → NH3 + KOH + 3 Zn (OH) 2
Quá trình oxy hóa bằng Nitrous acid có sự kiểm soát động học so với sự kiểm soát nhiệt động lực học, điều này được minh họa rõ nhất rằng axit nitơ loãng có thể oxy hóa I− thành I2, nhưng axit nitric loãng thì không thể.
Điều chế sản xuất Nitrous acid
Nitrous acid thường được tạo ra bằng cách axit hóa dung dịch nước của natri nitrit với một axit khoáng. Quá trình axit hóa thường được tiến hành ở nhiệt độ nước đá, và HNO2 được tiêu thụ tại chỗ. Axit nitơ tự do không ổn định và bị phân hủy nhanh chóng.
Nitrous acid (HNO2): Một axit yếu chỉ tồn tại trong dung dịch. Nó có thể tạo thành nitrit hòa tan trong nước và các este ổn định.
Nitrous acid cũng có thể được sản xuất bằng cách hòa tan dinitơ trioxit trong nước theo phương trình: N2O3 + H2O → 2 HNO2
Cơ chế hoạt động Nitrous acid
Nitrous acid là chất có tính chất oxy hóa khử, là chất phân hủy tạo ra được các sản phẩm ứng dụng được trong đời sống.
Tên gọi, danh pháp
Tên tiếng Việt: Kim ngân hoa.
Tên gọi khác: Nhẫn đông, song hoa.
Tên khoa học: Lonicera japonica Thunb. Theo Dược điển Việt Nam V, một số loài khác cùng chi như Lonicera dasystyla Rehd.; Lonicera confusa DC.; Lonicera cambodiana Pierre cũng có thể dùng làm vị thuốc Kim ngân hoa.
Chi Lonicera, họ Caprifoliaceae, bộ Dipsacales.
Đặc điểm tự nhiên
Cây leo bằng thân quấn, có thể dài tận 10m hoặc hơn. Cành non của cây có lớp lông đơn ngắn mịn bao phủ và lông tuyến có cuống, thường hay thấy ở thân già, màu hơi đỏ có vân.
Lá mọc đối, hơi dày, phiến lá có hình mũi mác hoặc trái xoan. Chiều dài lá từ 4 - 7 cm, rộng 2 - 4 cm, gốc tròn, đầu nhọn, có nhiều nếp trừ các gân của mặt dưới, cuống lá dài 5-6 mm, có lông tơ mịn.
Cụm hoa mọc thành từng đôi ở kẽ các lá tận cùng, tràng màu trắng hoặc bạc sau một thời gian sẽ chuyển sang màu vàng (nên có tên là Kim ngân), có lông mịn và lông tuyến ở ngoài, mùi thơm nhẹ đặc trưng, ống tràng dài từ 1,8 - 2 cm, có 2 môi, môi dài 1,5 - 1,8 cm, nhị 5 thò ra ngoài, dính ở họng tràng hoa, bao phấn đính lưng. Hoa có kèm lá bắc hình mũi mác, tròn có lông thưa ở mép, dài 5 răng, mảnh, đôi khi không bằng nhau, có lông mịn.
Quả hình cầu hoặc hình trứng, dài khoảng 5mm, có màu đen.

Phân bố, thu hái, chế biến
Phân bố: Có khoảng 10 loài thực vật thuộc chi Lonicera tại Việt Nam được dùng làm vị thuốc Kim ngân hoa. Kim ngân có nguồn gốc từ các vùng Đông Á như Trung Quốc, Nhật Bản, Triều Tiên. Sau này, cây được trồng rộng rãi tại nhiều nơi như Việt Nam, các nước Châu Mỹ, Úc,... Tại Việt Nam, Kim ngân hoa chủ yếu được thu hái tại Cao Bằng, Lạng Sơn, Bắc Giang,...
Thu hái: Kim ngân trồng vào thời vụ mùa đông và mùa xuân rất thuận lợi để sinh trưởng. Việc thu hái hoa nên thực hiện khi hoa gần chớm nở vào khoảng 9 - 10 giờ sáng khi sương đã ráo. Dây lá thì có thể thu hái quanh năm.
Chế biến: Sau khi thu hái, loại bỏ tạp chất rồi phơi trong bóng râm hoặc sấy nhẹ đến khi khô hoàn toàn. Tỷ lệ cành lá không quá 2%, các tạp chất khác không quá 0,5%.
Bảo quản: Nơi khô ráo, thoáng mát, tránh sâu mọt, độ ẩm không quá 12%.

Bộ phận sử dụng
Nụ hoa của cây Lonicera japonica Thunb. hoặc các cây cùng chi được sử dụng làm thuốc.
Nụ hoa dùng làm thuốc hình ống cong dài từ 1 - 5cm, đầu to, đường kính từ 0,2 - 0,5cm, phủ đầy lông ngắn và có màu vàng hoặc vàng nâu. Mùi thơm nhẹ và vị hơi đắng. Tỷ lệ hoa nở không quá 10%.

Gellan Gum là gì?
Gellan gum, chỉ số quốc tế là E418, là một chất phụ gia thực phẩm được sử dụng để thay thế cho Gelatin và thạch Agar, hiện được tìm thấy trong nhiều loại thực phẩm chế biến bao gồm mứt, kẹo, thịt và sữa thực vật.

Chất phụ gia thực phẩm này thường được sử dụng để kết dính, ổn định hoặc tạo kết cấu cho thực phẩm đã qua chế biến, tương tự như các chất tạo gel khác như Guar gum, Carrageenan, thạch Agar và Xanthan gum.
Gellan gum là một Polysaccharide anion hòa tan trong nước được tạo ra bởi vi khuẩn Sphingomonas elodea. Vi khuẩn sản sinh Gellan được phát hiện và phân lập vào năm 1978 từ mô cây hoa loa kèn trong ao nước tự nhiên ở Pennsylvania.
Gellan gum có thể chịu được nhiệt 120 độ C, được xác định là một chất tạo gel đặc biệt hữu ích trong việc nuôi cấy vi sinh vật ưa nhiệt. Chỉ cần khoảng một nửa lượng Gellan gum dưới dạng thạch có thể đạt được độ bền gel tương đương, mặc dù kết cấu và chất lượng chính xác phụ thuộc vào nồng độ của các điện tích dương hóa trị hai. Gellan gum cũng được sử dụng làm chất tạo gel trong nuôi cấy tế bào thực vật trên đĩa Petri, vì nó tạo ra một chất gel rất trong, tạo điều kiện thuận lợi cho việc phân tích tế bào và mô bằng kính hiển vi quang học.
Là một chất phụ gia thực phẩm, Gellan gum lần đầu tiên được phép sử dụng trong thực phẩm ở Nhật Bản năm 1988, sau đó đã được nhiều quốc gia khác như Mỹ, Canada, Trung Quốc, Hàn Quốc và Liên minh Châu Âu chấp thuận sử dụng trong thực phẩm, phi thực phẩm, mỹ phẩm và dược phẩm...
Gellan gum được sử dụng trong các loại sữa có nguồn gốc thực vật để giữ cho Protein thực vật lơ lửng trong sữa. Thành phần này cũng đã trở nên phổ biến trong ẩm thực cao cấp, đặc biệt là trong ẩm thực phân tử để tạo ra các loại gel có hương vị. Đầu bếp người Anh Heston Blumenthal và đầu bếp người Mỹ Wylie Dufresne được xem là những đầu bếp đầu tiên kết hợp Gellan gum vào ẩm thực tại nhà hàng cao cấp.
Điều chế sản xuất
Gellan gum là chất phát triển tự nhiên trên hoa súng.
Trong quy trình sản xuất nhân tạo, Gellan gum được sản xuất bằng cách lên men đường với trực khuẩn mủ xanh Pseudomonas elodea, bao gồm một đơn vị lặp lại của các Monome, Tetrasaccharide, là hai gốc của D-glucose và một trong mỗi gốc của axit D-glucuronic và L-rhamnose.
Cơ chế hoạt động
Gellan gum khi được ngậm nước thích hợp, có thể được sử dụng trong các công thức làm kem và sữa chua, hoạt động như một loại gel lỏng sau khi khuấy.
Sản phẩm liên quan







