Fish collagen
Phân loại:
Thành phần khác
Mô tả:
Fish collagen là gì?
Xét về nguồn gốc, hiện nay trên thị trường đang bày bán hai loại collagen: Collagen có nguồn gốc từ động vật trên cạn và một loại khác là collagen có nguồn gốc từ cá (fish collagen).
Fish collagen thuộc dạng collagen loại 1, là loại collagen quan trọng cho làn da đẹp và xương chắc khỏe. Đây là một loại protein được thủy phân từ da cá bằng enzyme đặc hiệu, có kích thước phân tử nhỏ hơn các loại collagen khác giúp cơ thể hấp thu dễ dàng hơn.
Fish collagen có kích thước phân tử chỉ bằng 1/60 so với collagen thông thường. Chính vì kích thước nhỏ như vậy nên khi vào đến dạ dày, fish collagen không cần nhiều thời gian để thủy phân hơn so với collagen thông thường. Từ đó nó cũng mang lại hiệu quả vượt trội hơn, khả năng hấp thu nhanh hơn gấp 5-7 lần so với collagen thông thường.
Ngoài ra, fish collagen hầu như không chứa hoặc chứa rất ít chất béo, thích hợp với tất cả mọi người kể cả người ăn kiêng.
Bên cạnh đó, do đặc tính phải chịu áp lực của dòng nước nên so với động vật trên cạn, da cá sẽ có độ đàn hồi chắc hơn nhiều. Vì thế, collagen được chiết xuất từ cá biển sâu có độ đàn hồi và độ dẻo dai rất cao.
Trong 10 gram fish collagen có chứa 45 calo, 9,4gram protein, 10 miligam natri, 0,07 miligam kali, 0,05 miligam canxi, 0,04 miligam sắt.
Điều chế sản xuất fish collagen
Fish collagen được chiết xuất thông qua một quá trình thủy phân phức tạp từ da và vảy cá, chúng hầu như không gặp phải các vấn đề về vệ sinh, không mang các vi khuẩn, virus truyền nhiễm từ động vật.
Cơ chế hoạt động của fish collagen
Chức năng chính của fish collagen là kết nối các mô trong cơ thể lại với nhau. Fish collagen là yếu tố cần thiết trong quá trình tạo ra các axit amin cần thiết cho sức khỏe của làn da, mái tóc, móng tay, khớp xương và các mô khác trên cơ thể người.
Fish collagen mang lại hiệu quả cao đối với làn da con người bởi khả năng hồi phục và tái tạo da, duy trì sự đàn hồi cho da, chống lão hóa.
Dược động học:
Dược lực học:
Xem thêm
Lauryl PEG-9 Polydimethylsiloxyethyl là gì?
Lauryl Peg-9 Polydimethylsiloxyethyl Dimethicone là một chất lỏng nhũ hóa silicone. Nó là một loại Polymer Silicone phân nhánh có khả năng tan trong nước và dầu. Số PEG sau trong tên thành phần (tức là PEG-9) tương ứng với số đơn vị được lặp lại của Ethylene Glycol. Nếu con số theo ký hiệu PEG càng lớn thì phân tử sẽ càng “nặng” và càng phức tạp.
Điều chế sản xuất
Lauryl peg-9 polydimethylsiloxyethyl là một polyme silicone phân nhánh, còn được gọi là polysiloxan (silicone nguyên tố và oxy). Sau đó, nó được liên kết với PEG-9 với một quá trình được gọi là ethoxyl hóa hoặc sửa đổi polyethylene glycol. Ở đây số liên kết với PEG là đơn vị lặp lại của ethylene glycol, số lượng càng lớn thì phân tử càng nặng.
![]()
Lauryl peg-9 polydimethylsiloxyethyl là một polyme silicone phân nhánh
Cơ chế hoạt động
Lauryl PEG-9 Polydimethylsiloxyethyl là một chất lỏng nhũ hóa silicone với công dụng chính là giúp công thức trở nên dễ tán hơn (các sắc tố hoặc các thành phần chống nắng vật lý). Lauryl PEG-9 Polydimethylsiloxyethyl Dimethicone có cả đầu ưa nước và ưa dầu nên sẽ giúp Titanium Dioxide và Zinc Oxide được phân tán đều trên da, mang lại hiệu quả chống nắng tốt hơn, đồng thời nó cũng giúp giảm thiểu vệt trắng trên da do sử dụng thành phần chống nắng vật lý. Đây cũng chính là lý do Lauryl PEG-9 Polydimethylsiloxyethyl Dimethicone xuất hiện nhiều trong các sản phẩm trang điểm như phấn mắt và che khuyết điểm.
Lauryl Peg-9 Polydimethylsiloxyethyl ưa béo với khả năng nhũ hóa W / Si và W/O tuyệt vời. Nó có khả năng nhũ hóa tốt cho dầu silicon và dầu không silicon, và khả năng phân tán tuyệt vời cho các vật liệu dạng bột. Sản phẩm có mùi đặc trưng nhẹ.
Hydroxypropyl cellulose là gì?
Danh pháp quốc tế IUPAC: 4-(1-aminopropyl)-N,N,3-trimethylaniline.
PubChem CID: 123706
Tên gọi khác: Benzeneethanamine, 4-(dimethylamino)-alpha,2-dimethyl-, Oxypropylated cellulose, E463, Hyprolose, Lacrisert.
Công thức hóa học C12H20N2, trọng lượng phân tử 192.30
Hydroxypropyl cellulose là một dẫn chất ete của cellulose, trong đó một số nhóm hydroxyl trong các đơn vị glucose lặp lại được hydroxypropyl hóa tạo công thức OCH2CH(OH)CH3 bằng cách sử dụng propylene oxide.
Do mức độ hydroxypropyl hóa cao (~ 70%), Hydroxypropyl cellulose dẻo hơn và tương đối kỵ nước so với các cellulose ete hòa tan trong nước khác. Nó có thể hòa tan hoàn toàn trong nước và các dung môi hữu cơ phân cực, chẳng hạn như methanol, ethanol, rượu isopropyl (IPA) và acetone. Độ hòa tan của Hydroxypropyl cellulose trong nước phụ thuộc vào nhiệt độ, nó dễ hòa tan ở nhiệt độ dưới “điểm mây” khoảng 45 độ C (nhiệt độ dưới đó mà polyme bắt đầu phân tách pha, và hai pha xuất hiện).
Hydroxypropyl cellulose có hai loại: H-HPC và L-HPC, L-HPC thay thế thấp có chức năng như một chất kết dính và phân hủy trong lĩnh vực dược phẩm.
Hydroxypropyl cellulose là một chất trơ về mặt sinh lý. Trong một nghiên cứu về những con chuột được cho ăn hydroxypropyl cellulose hoặc cellulose không biến tính ở mức lên đến 5% trong chế độ ăn của chúng, người ta thấy rằng cả hai tương đương nhau về mặt sinh học ở chỗ cả hai đều không bị chuyển hóa.
Điều chế sản xuất Hydroxypropyl cellulose
Hydroxypropyl cellulose được sản xuất bằng cách phản ứng cellulose kiềm với propylene oxide ở áp suất và nhiệt độ cao để tạo ra cellulose ete, với 3.4-4.1 mol nhóm thế hydroxypropyl trên mỗi mol đơn vị gốc anhydroglucose (theo Ashland, 2001).
Để Hydroxypropyl cellulose không bị vón cục trong điều chế, Hydroxypropyl cellulose có thể được phân tán trong 50% thể tích nước nóng (> 60 độ C) và sau 10 phút hydrat hóa, phần nước còn lại có thể được thêm nước lạnh trong khi tiếp tục khuấy. Do khả năng kết dính cao, Hydroxypropyl cellulose có xu hướng đặc biệt phù hợp trong chế biến các viên nén liều cao, hoặc khó nén, khi các chất đó chỉ có thể thêm một lượng nhỏ chất kết dính.
Nói chung, sản xuất có thể đạt được bằng hai bước, kiềm hóa và ete hóa:
Bước 1: Kiềm hóa
Phân tán bột giấy cellulose nguyên liệu thô trong dung dịch kiềm (thường là natri hydroxit, 5–50%) để tạo thành cellulose kiềm.
Cell-OH + NaOH → Cell·O-Na+ + H2O
Bước 2: Ete hóa
Phản ứng của Cellulose kiềm với Propylen oxit trong điều kiện được kiểm soát nghiêm ngặt. Trong bước phản ứng này, các nhóm hydroxyl (-OH) trên các monome anhydroglucose của chuỗi cellulose được thay thế một phần bởi các nhóm hydroxypropoxy (–OCH2CHOHCH3) sau khi ete hóa.
Cơ chế hoạt động
Hydroxypropyl cellulose có sẵn trên thị trường với các cấp độ nhớt khác nhau, với cấp trọng lượng phân tử trung bình (MW) nằm trong khoảng từ 20 đến 1500kDa. Các cấp MW thấp thường được sử dụng làm chất kết dính. Hydroxypropyl cellulose là chất kết dính cao cấp và đã cho thấy hiệu quả kết dính tương đương và khả năng kết dính tốt khi được thêm vào dưới dạng dung dịch hoặc ở dạng bột khô (theo Skinner & Harcum, 1998).
Ngoài ra, đối với dạng bổ sung khô, các loại hạt có kích thước hạt mịn được ưa thích hơn vì tốc độ hydrat hóa nhanh hơn và sự đồng nhất của quá trình trộn và phân phối. Các lớp thô được ưu tiên để bổ sung dung dịch vì chúng phân tán dễ dàng hơn mà không bị vón cục.
Hydroxypropyl cellulose đặc biệt tốt trong việc giữ nước và tạo ra một lớp màng đóng vai trò như một rào cản chống thất thoát nước.
Ethylparaben là gì?
Ethylparaben là este ethyl của axit p-hydroxybenzoic. Ethylparaben là một trong những chất thuộc nhóm các hợp chất gọi là paraben (cùng methylparaben, butylparaben, isobutylparaben và propylparaben).
Paraben từng được dùng phổ biến trong công thức của các sản phẩm mỹ phẩm với vai trò của một chất bảo quản. So với các chất bảo quản khác, paraben được ưa chuộng bởi tính chất nhẹ nhàng, không nhạy cảm và hiệu quả cao của nó.
Ngoài ra, paraben nói chung, Ethylparaben nói riêng có nguồn gốc tự nhiên từ thực vật dưới dạng axit p-hydroxybenzoic (PHBA). Trên thực tế, paraben được sử dụng trong mỹ phẩm giống hệt với những chất có trong tự nhiên. Nếu paraben được hấp thụ qua da, cơ thể con người có thể nhanh chóng chuyển hóa chúng thành PHBA và loại bỏ chúng.
Tuy nhiên, thời gian qua, có nhiều ý kiến tranh cãi xung quanh việc sử dụng paraben do nhóm các hợp chất này bị cáo buộc liên quan đến các vấn đề sức khỏe.
Glycolic Acid là gì?
Glycolic Acid hay Axit glycolic là thành viên nhỏ nhất trong họ Alphahydroxy Acid (AHA), thuộc nhóm axit gốc nước. Axit glycolic có công thức hóa học là C2H4O3, là axit không màu, không mùi, ở thể rắn (tinh thể) có khả năng hút ẩm rất cao. Axit glycolic có thể được dễ dàng tìm thấy trong các nguyên liệu tự nhiên như mía, củ cải đường, dứa,… Hiện nay, Axit glycolic được ứng dụng khá rộng rãi trong nhiều ngành công nghiệp chế biến thực phẩm và làm đẹp.
Công thức hóa học của Axit glycolic
Với khả năng ngậm nước và thẩm thấu tốt, Axit glycolic là một trong những “thành phần vàng” được phái đẹp ưa chuộng trong làm đẹp và chăm sóc da. Axit glycolic xuất hiện hầu hết trong các sản phẩm chăm sóc da hiện nay như sữa rửa mặt, toner, kem dưỡng,… Với kết cấu phân tử nhỏ dễ dàng thấm thấu qua lớp biểu bì, Axit glycolic giúp loại bỏ các tế bào chết trên da, kích thích sản sinh collagen, cải thiện cấu trúc da, ngăn ngừa quá trình lão hóa da.
Ngoài ra, Axit glycolic còn gián tiếp giúp da hạn chế mất nước, tăng cường độ ẩm cao nhờ khả năng kích thích hoạt động của Hyaluronic acid dưới da. Với nồng độ được khuyến nghị từ 10 - 15% trong mỹ phẩm, Axit glycolic sẽ phát huy được tối đa công dụng của loại AHA này với khả năng tăng cấu trúc dưới da, giảm quá trình tạo nếp nhăn, điều trị mụn, giảm lượng melanin sau khi tổng hợp, giảm các vết thâm và chống lại các tổn hại do ánh nắng mặt trời.
Axit glycolic tăng cấu trúc dưới da, giảm quá trình tạo nếp nhăn
Tuy nhiên, vì phân tử nhỏ và độ thẩm thấu cao nên Axit glycolic cũng có khả năng gây kích ứng cao với da. Theo nghiên cứu, nồng độ Axit glycolic trong mỹ phẩm thường hạn chế ở mức 10 - 15%. Cụ thể, Axit glycolic nồng độ từ 2 – 5% được dùng tẩy tế bào chết, làm thông thoáng lỗ chân lông, hỗ trợ việc điều trị mụn và da khô. Axit glycolic từ 5 – 10% giúp da khỏe mạnh và căng mịn hơn, giảm các vết nhăn li ti và giúp làn da sáng mịn. Axit glycolic từ 12 - 15% điều trị da thâm sạm và sẹo mụn.
Điều chế và sản xuất Glycolic Acid
Glycolic acid có thể được phân lập từ các nguồn tự nhiên như mía, củ cải đường, dứa, dưa đỏ và nho chưa chín.
Ngoài ra, Glycolic acid có thể được điều chế bằng phản ứng của axit chloroacetic với natri hydroxide, sau đó tái axit hóa.
Cơ chế hoạt động của Glycolic Acid
Glycolic acid phá vỡ lớp liên kết của lớp da trên cùng bằng cách hòa tan bã nhờn và các chất liên kết tế bào lại với nhau. Sau đó, acid này sẽ giúp các tế bào da bị chết bong ra giúp bề mặt da trở nên thoáng và sáng màu hơn.
Astaxanthin là gì?
Trong một số loại tảo, tạo ra màu hồng hoặc đỏ cho cá hồi, tôm và các loại hải sản khác có thành phần Astaxanthin - thuộc một nhóm hóa chất carotenoid. Ngoài dầu cá cùng axit béo omega-3, Astaxanthin là một dưỡng chất từ đại dương đem lại nhiều lợi ích cải thiện các chức năng trong cơ thể con người.
Chất chống oxy hóa Astaxanthin có thể bảo vệ các tế bào khỏi bị hư hại, cải thiện cách hoạt động của hệ miễn dịch. Công dụng của astaxanthin được đánh giá khá tốt. Nó giúp làn da khỏe mạnh hơn, tăng sức bền, sức khỏe tim mạch, giảm đau khớp và thậm chí có thể điều trị ung thư trong tương lai.
Astaxathin đã được sử dụng điều trị bệnh Alzheimer, Parkinson, đột quỵ, cholesterol cao, bệnh gan, thoái hóa điểm vàng do tuổi tác (mất thị lực do tuổi tác) kể cả ngăn ngừa ung thư. Nó còn được sử dụng điều trị cho hội chứng chuyển hóa - bao gồm tăng nguy cơ mắc bệnh tim, đột quỵ và tiểu đường. Tác dụng của astaxathin cải thiện hiệu suất tập thể dục, giảm tổn thương cơ và đau nhức cơ sau khi tập luyện. Nó còn ngăn ngừa cháy nắng, cải thiện giấc ngủ, điều trị hội chứng ống cổ tay, chứng khó tiêu, vô sinh nam, các triệu chứng mãn kinh và viêm khớp dạng thấp.
Astaxanthin dạng kem được thoa trực tiếp lên da giúp chống nắng, giảm nếp nhăn và nhiều lợi ích thẩm mỹ khác.
Astaxanthin được dùng trong nông nghiệp để làm thức ăn bổ sung cho gà đẻ trứng. Trong thự phẩm, astaxanthin được sử dụng làm chất tạo màu cho cá hồi, cua, tôm, gà và trứng...
Điều chế sản xuất
Hoạt chất astaxanthin là hợp chất lipophilic được hòa tan trong dung môi và dầu với phương pháp dùng dung môi và axit, dầu ăn hỗ trợ vi sóng và enzyme được sử dụng để cấu trúc astaxanthin. Astaxanthin trong Haematococcus được cấu trúc bằng nhiều phương pháp sử dụng các axit khác nhau, có thể chiết bằng axit hydrochloric cho phép thu được tới 80% lượng sắc tố, astaxanthin được tích lũy trong các tế bào nang hóa của Haematococcus.
Đậu nành, ngô, ô liu và hạt nho được sử dụng để cấu trúc astaxanthin từ Haematococcus để làm dầu. Haematococcus nuôi cấy được trộn với các loại dầu và astaxanthin bên trong tế bào, nó được cấu trúc thành các loại dầu, với độ thu hồi cao nhất 93% với dầu ô liu. Astaxanthin và Haematococcus thu được sản lượng khá cao từ 80% 90% 90% sử dụng phương pháp cấu trúc chất lỏng siêu tới hạn với ethanol và dầu hướng dương làm đồng dung môi. Quy trình cô đặc Astaxanthin được cấu trúc nhiều lần bằng dung môi và sau đó làm bay hơi bằng thiết bị bay hơi quay, cuối cùng hòa tan lại trong dung môi.
Từ các vi sinh vật khác nhau bao gồm vi tảo Chlorella zofingiensis , Chlorococcum sp, nấm men đỏ Phaffia rhodozyma, và vi khuẩn biển Agrobacterium aurantiacum người ta sản xuất hoạt chất astaxathin. Nguyên liệu tự nhiên cung cấp nhiều AXT là tảo biển Haematococcus pluvialis, khi những sinh vật này tiếp xúc với các tác nhân gây căng thẳng từ môi trường, chúng sẽ tổng hợp AXT như một chất bảo vệ tế bào.
Astaxanthin chịu trách nhiệm tạo ra màu sắc cho vỏ giáp xác và thịt của kỳ giông và các loài cá khác ăn AXT và nó có sắc tố đỏ cam sẫm. Thức ăn hải sản là một nguồn thực phẩm dồi dào của AXT, muốn lấy được liều 4–20 mg AXT chỉ thông qua chế độ ăn uống, người ta sẽ phải tiêu thụ 600-2000g cá salmonoid.
Ở Hoa Kỳ từ năm 1999 AXT đã được phê duyệt như một chất bổ sung chế độ ăn uống. AXT được quảng cáo thương mại vì một loạt các lợi ích sức khỏe. Cơ quan quản lý thực phẩm và dược phẩm chứng nhận AXT là an toàn.
Mặc dù khả dụng sinh học bị ảnh hưởng nhiều bởi các thành phần khác của chế độ ăn uống nhưng AXT được tiêu hóa và hấp thụ tương tự như lipid và các carotenoid khác. Đối với AXT dùng đường có tỷ lệ cao hơn khi dùng trong bữa ăn hoặc được cung cấp trong công thức chế biến từ dầu. AXT được cho là tích tụ trong các giọt lipid trong dịch vị và sau đó kết hợp thành các mixen khi chúng gặp axit mật, phospholipid và lipase trong ruột non. Các mixen được khuếch tán thụ động vào màng sinh chất của các tế bào ruột.
AXT cũng như các xanthophylls phân cực hơn, được vận chuyển trong tuần hoàn bởi lipoprotein mật độ cao (HDL) và lipoprotein mật độ thấp (LDL), sau khi được giải phóng khỏi chylomicrons được hình thành trong tế bào ruột. Một số báo cáo rằng, sau khi dùng liều 100mg/kg, nồng độ trong huyết tương đạt đỉnh đến 1 μg/ml vào khoảng 9 giờ sau khi dùng thuốc. AXT được đưa vào nhiều mô, bao gồm não, nhưng chủ yếu tích tụ ở gan.
Cấu trúc hóa học của AXT bao gồm một chuỗi cacbon dài với các liên kết đôi liên hợp, nhưng AXT đặc biệt là nó chứa hai vòng hydroxyl hóa ionone ở hai đầu của phần ưa béo của phân tử liên kết với các đầu phân cực của phospholipit. Tính năng này định vị chính xác phân tử để nó có thể can thiệp vào quá trình peroxy hóa lipid, về mặt này, AXT đặc biệt thành thạo trong việc bảo vệ tính toàn vẹn của màng tế bào. Kích thước, cấu hình này của AXT cho phép nó tích hợp theo chiều dọc thông qua lớp kép phospholipid vì các nhóm chức năng của cấu trúc AXT thuận lợi về mặt năng lượng theo hướng này.
Cơ chế hoạt động
Có nhiều cách bổ sung astaxanthin, cách bổ sung bằng hình thức ăn thực phẩm giàu chất astaxanthin. Có thể bổ sung thực phẩm chức năng có thành phần astaxanthin vì cơ thể không tự sản xuất được astaxanthin. Cá hồi, tôm, tôm hùm và các loại hải sản khác giàu astaxathin.
Tuy nhiên, việc ăn nhiều hải sản cũng không hoàn toàn là ưu điểm để có được lượng astaxanthin cần thiết mà nên ăn đa dạng thức ăn. Muốn bổ sung lượng astaxanthin nhiều người chọn tảo Pluvialis có lượng astaxanthin sinh khả dụng cao nhất,3% sinh khối của nó là astaxanthin tinh khiết, cơ quan Quản lý Thực phẩm và Dược phẩm Hoa Kỳ (FDA) phê duyệt là một nguồn astaxanthin an toàn và khả thi.
Astaxanthin tổng hợp đã được sử dụng để sản xuất màu thực phẩm và thức ăn cho cá. Phaffia rhodozyma, một loại men đỏ phổ biến và một số loài giáp xác là hai nguồn astaxanthin thương mại chính khác.
Cơ chế hoạt động của staxanthin thực sự như thế nào? Có thể hiểu đơn giản đó là một chất chống oxy hóa.
- Astaxanthin rất mạnh và cao hơn gần 6.000 lần so với vitamin C.
- Nó có một nguồn chất chống oxy hóa nhiều hơn trà xanh hoặc các Catechin khác gần 550 lần.
- Astaxanthin có hiệu quả chống oxy hóa cao hơn vitamin 550 lần.
Đối với cơ thể, chất chống oxy hóa rất quan trọng, chúng đóng một vai trò lớn trong sự tăng trưởng và sức khỏe của con người. Thành phần Astaxanthingiúp cơ thể chống oxy hóa
Astaxanthin là một trong những cách tốt nhất để ăn chất chống oxy hóa vào cơ thể bạn. Chúng đóng một vai trò lớn trong sự tăng trưởng và sức khỏe của con người. Những hợp chất tiện lợi này có một số đặc tính chống viêm mạnh nhất.
Đặc tính chống oxy hóa của astaxanthincó khả năng giúp cơ thể chống lại nhiều loại bệnh như ung thư và giúp cải thiện về sức khỏe.
Chất chống oxy hóa là các phân tử giúp cơ thể chống lại gốc tự do, những phân tử này liên tục được phát hành trong quá trình trao đổi chất.
Astaxanthin có khả năng kiểm soát các gốc tự do vì vậy các gốc tự do không thể phá hủy các tế bào tốt.
Chất chống oxy hóa hoạt động trên các gốc tự do bằng cách tăng electron. Quá trình này làm cho các gốc tự do ổn định và trung hòa. Khi có sự cản trở sự cân bằng này có thể dẫn đến oxy hóa kém, có thể gây bất lợi cho cơ thể của chúng ta.
Không giữ được cân bằng oxy hóa kéo dài có thể dẫn đến tăng nguy cơ xấu về sức khỏe như rối loạn thoái hóa thần kinh, bệnh tim và một số bệnh ung thư. Thói quen lối sống và các yếu tố môi trường tác động đến khiến cơ thể chúng ta dễ bị bệnh tật do hằng ngày chúng ta tiếp xúc ới nhiều yếu tố rủi ro làm tăng sự hình thành gốc tự do.
Beta glucan là gì?
Beta-glucan là một dạng Polysaccharide không đồng nhất của phức hợp Glucose polyme. Đây là chất xơ hòa tan có từ thành tế bào của vi khuẩn, nấm, nấm men, vỏ yến mạch, lúa mạch.
Từ những năm 1960, các nhà khoa học đã phát hiện và bắt đầu nghiên cứu hoạt chất này. Câu chuyện về Beta-glucan bắt đầu từ việc nghiên cứu Zymosan, một loại thuốc được sử dụng khắp châu Âu để kích thích miễn dịch, là hỗn hợp các thành phần từ thành tế bào nấm men bao gồm Protein, Lipid, Polysaccharide. Trong đó, Beta-1,3/1,6 D-glucan chính là loại Polysaccharide có tác dụng chính kích thích miễn dịch của loại thuốc này. Hoạt tính của Beta-glucan dựa vào cấu trúc phân tử, kích thước, tần số phân nhánh, sửa đổi cấu trúc, hình dạng và độ hòa tan. Những Beta-glucan có hoạt tính sinh học thường có trọng lượng phân tử lớn.
Sau này, hàng triệu nghiên cứu về Beta-glucan được thực hiện trên khắp thế giới và ứng dụng rộng rãi trong dược phẩm cho cả người và động vật. Theo các nghiên cứu khoa học, Beta-glucan chống lại các khối u lành tính hay ác tính, bệnh nhiễm khuẩn một cách hiệu quả… Có nhiều dạng Beta-glucan như (1,3/1,4), (1,3/1,6), trong đó Beta-glucan (1,3/1,6) có tác dụng lên hệ miễn dịch mạnh nhất và được sử dụng cho các sản phẩm hỗ trợ điều trị ung thư.
Beta-glucan có thể ngăn cơ thể hấp thụ Cholesterol từ thức ăn. Chúng cũng có thể kích thích hệ thống miễn dịch bằng cách tăng các hóa chất ngăn ngừa nhiễm trùng. Tổ chức FDA (Mỹ) cho phép các sản phẩm có chứa ít nhất 750mg Beta-glucan để giảm nguy cơ mắc bệnh tim.
Thành phần này cũng được sử dụng cho nhiều bệnh khác như bệnh chàm và bệnh tiểu đường, nhưng không có đủ bằng chứng khoa học để cho các công dụng này.
Điều chế sản xuất
Có hai cách để chiết xuất Beta-glucan gồm phương pháp hóa học và sinh học. Phương pháp hóa học để tách chiết Beta-glucan sử dụng các dung dịch kiềm và Acid. Tuy nhiên phương pháp này có nhược điểm là làm cho Beta-glucan bị lẫn nhiều tạp chất, phá vỡ cấu trúc, dẫn đến làm giảm hoạt tính sinh học của phân tử Beta-D-glucan. Ngoài ra, quá trình tách chiết còn thải ra nhiều sản phẩm phụ gây ô nhiễm môi trường.
Trong khi đó, phương pháp sinh học sử dụng Enzyme để tách chiết Beta-glucan. Nhiệm vụ của các Enzyme là chiết xuất Beta-1,3/1,6-D glucan bằng cách loại bỏ Protein, Lipid và một số loại Polysaccharide trong thành tế bào nấm. Phương pháp Enzyme có ưu điểm là bảo toàn được cấu trúc nguyên bản của Beta-1,3/1,6-D glucan nên giữ nguyên hoạt tính sinh học của hoạt chất này. Sử dụng Enzyme còn thân thiện với môi trường vì giảm thiểu các chất thải gây ô nhiễm.
Cơ chế hoạt động
Mặc dù là một chất xơ hòa tan nhưng Beta-glucan không được tiêu hóa mà lại làm chậm quá trình vận chuyển thức ăn trong ruột. Kết quả, Carbohydrate được hấp thụ chậm hơn, dẫn đến lượng đường trong máu ổn định hơn. Ngoài ra, Beta-glucan mang theo Cholesterol khi di chuyển chậm qua đường tiêu hóa.
Dipotassium Glycyrrhizate là gì?
Dipotassium glycyrrhizate (DPG) là muối kali của acid glycyrrhizic (glycyrrhizin) – thành phần chính trong chiết xuất rễ cây cam thảo Glycyrrhiza glabra, họ đậu Fabaceae.
Trong mỹ phẩm và các sản phẩm chăm sóc cá nhân, các nhà sản xuất đã đưa vào Dipotassium glycyrrhizate nhằm mục đích nuôi dưỡng, kháng viêm và làm dịu da, đồng thời cũng là chất nhũ hóa và tạo gel cho sản phẩm. Dipotassium Glycyrrhizate có tác dụng dưỡng da, giúp làm dịu làn da bị kích ứng và hỗ trợ cải thiện kết cấu công thức.
Dipotassium Glycyrrhizate phù hợp với mọi loại da, trừ những người được xác định là dị ứng với nó. Tuy nhiên, nhược điểm của Dipotassium glycyrrhizate là không được hấp thụ tốt vào da.
Bên cạnh đó, từ hàng nghìn năm trước, chiết xuất rễ cây cam thảo đã được sử dụng trong y học cổ truyền Trung Quốc với công dụng nổi tiếng là làm dịu vùng mô bị viêm cũng như hỗ trợ loại bỏ đờm và chất nhầy ra khỏi đường hô hấp. Do đó, cam thảo có thể chữa được mọi thứ từ cảm lạnh thông thường cho đến bệnh gan.
Điều chế sản xuất Dipotassium Glycyrrhizate
Dipotassium Glycyrrhizinate là hoạt chất tinh chế từ rễ cam thảo, dạng bột, tan nước có khả năng kháng viêm tốt. Nhiều người sẽ lầm tưởng bột cam thảo nào cũng có tác dụng kháng viêm và giảm kích ứng tốt như nhau nhưng Dipotassium Glycyrrhizinate là thành phần chiết xuất đặc biệt của cam thảo, chỉ lấy những phần cần thiết trong cam thảo để phục vụ mục đích kháng viêm, kháng khuẩn, làm trắng và chống kích ứng da thôi, nên hiệu quả nó vượt trội so với bột cam thảo hay nước chiết xuất cam thảo bình thường.
Cơ chế hoạt động của Dipotassium Glycyrrhizate
Dipotassium Glycyrrhizinate là một chất chống viêm được sử dụng rộng rãi được phân lập từ rễ cây cam thảo. Nó được chuyển hóa thành Glycyrhetinic Acid, ức chế 11-beta-Hydroxysteroid Dehydrogenases và các enzym khác liên quan đến quá trình chuyển hóa Corticosteroids.
Dipotassium Glycyrrhizinate có khả năng làm sáng da đáng kể nhờ vào việc ức chế sắc tố, phân tán melanin, ức chế sinh tổng hợp melanin và ức chế enzym cyclooxygenase. Nói dễ hiểu thì Dipotassium Glycyrrhizinate ức chế không cho melanin di chuyển và xuất hiện trên bề mặt da.
Tên gọi, danh pháp
Tên Tiếng Việt: Bát giác liên.
Tên gọi khác: Độc diệp nhất chi hoa, độc cước liên, pha mỏ.
Tên khoa học: Dysosma tonkinense (Gagnep.) M.Hiroe. Họ: Hoàng mộc (Berberidaceae). Chi: Bát giác liên (Dysosma Woodson.), đây là một chi nhỏ gồm 7 đến 10 loài cây thân thảo sống lâu năm.
Đặc điểm tự nhiên
Bát giác liên là cây cỏ nhỏ sống lâu năm do thân rễ, có chiều cao trung bình từ 30- 50cm.
Rễ
Bát giác liên là cây hai lá mầm nhưng có kiểu rễ chùm gồm nhiều rễ nhỏ hình sợi mọc từ thân rễ. Rễ cây phát triển thành củ mẫm, chứa nhiều tinh bột nên có màu trắng.
Rễ cây có đường kính 1,5-2,5mm, dài 30cm - 70 cm (tối đa lên tới 80cm). Bề mặt ngoài của rễ có nhiều lông rễ, màu vàng chanh sau đó chuyển sang màu nâu nhạt.
Về vi thể, mặt cắt ngang rễ Bát giác liên có hình tròn, biểu bì gồm một lớp tế bào đa giác hay h́ình gần tṛòn, được xếp tương đối đều đặn. Có các lớp mô mềm ở dưới các lớp biểu bì gồm các tế bào tròn có thành mỏng.
Thân rễ
Thân rễ Bát giác liên có hình trụ, mập, dạng chuỗi; màu vàng nâu, kích thước từ 2 - 4 cm. Trên thân rễ có những vết sẹo có khả năng phát triển thành một nhánh mới.
Về vi thể, các lát cắt của thân rễ hình tròn, cấu tạo từ ngoài vào trong bao gồm:lớp bần, mô mềm vỏ, các bó libe-gỗ. trong đó, lớp bần gồm 2-3 hàng tế bào hình đa giác. Các mô mềm vỏ cấu tạo bởi những tế bào thành mỏng, xếp lộn xộn. Các bó libe-gỗ kích thước khá đều nhau, trên mỗi bó libe-gỗ có đính 2 cụm tế bào mô cứng, 1 cụm nằm sát libe, 1 cụm nằm sát gỗ.
Lá
Lá Bát giác liên có hình dạng rất đa dạng từ dạng bầu dục không chia thùy cho đến dạng đa giác với nhiều thùy nông, từ 4 đến 9 cạnh nhưng phổ biến là 6 đến 8 cạnh. Đường kính lá khoảng 12 - 25 cm, mép lá có răng cưa nhỏ, khi non có vân.
Hoa
Hoa có màu đen trong chứa nhiều hạt, mọc đơn độc hay từng 4-12 trên 1 cuốn, có, hình trứng, đường kính khoảng 12mm. Hoa thường nở vào tháng 3 đến tháng 5.

Bát giác liên
Phân bố, thu hái, chế biến
Phân bố
Bát giác liên là cây thuốc có nhiều công dụng cho sức khỏe, khả năng tái sinh kém, nhưng đang bị khai thác quá mức nên rất quý hiếm.
Bát giác liên có phân bố ở Trung Quốc và Việt Nam. Ở Việt Nam, cây bát giác liên mọc nhiều ở những vùng núi cao, rừng ẩm như ở các tỉnh Lào Cai, Tuyên Quang, Hà Giang, Lai Châu.
Thu hái và chế biến
Rễ bát giác liên được thu hái vào mùa thu, đông, lá được hái vào mùa xuân, trước khi cây ra hoa, dùng tươi hay phơi khô để dùng dần. Người ta thường thu hái củ vào mùa thu đông, rửa sạch đất cát, dùng tươi hoặc đem phơi/ sấy khô.
Bát giác liên có tỷ lệ đậu quả rất thấp trong tự nhiên cũng như trong điều kiện trồng trọt nên việc sử dụng hạt làm vật liệu nhân giống là rất khó khăn; tuy vậy Bát giác liên có thể nhân giống bằng thân rễ. Do đó, Bát giác liên đã được đưa vào Sách Đỏ Việt Nam với mức phân hạng “nguy cấp”, nên cần được nghiên cứu nhân giống và bảo tồn.
Bộ phận sử dụng
Bộ phận dùng: Thân rễ - Rhizoma Dysosmae Versipellis; thường gọi là Quỷ cừu.
Dichlorobenzyl alcohol là gì?
- Danh pháp IUPAC: (2,4-dichlorophenyl)methanol.
- PubChem CID: 15684.
- Tên gọi khác: Dybenal, 1,4-Dichlorobenzyl alcohol, Rapidosept, Myacide SP.
- Công thức hóa học Dichlorobenzyl alcohol là C7H6Cl2O. Trọng lượng phân tử là 177.02.
- Dichlorobenzyl alcohol là một thành viên của nhóm Benzyl alcohols, trong đó các Hydro ở vị trí 2 và 4 được thay thế bằng Clo.
Dichlorobenzyl alcohol là một chất khử trùng nhẹ phổ rộng đối với vi khuẩn và vi rút liên quan đến nhiễm trùng miệng và cổ họng. Dichlorobenzyl alcohol được coi là một thành phần hoạt tính được tìm thấy trong một số sản phẩm OTC (Over-the-Counter: Thuốc không cần kê đơn) trên thị trường, bởi vì Bộ Y tế Canada đã phân loại tác nhân này như một hóa chất điều trị giải phẫu (ATC: Anatomical therapeutic chemical).
Mặt khác, Dichlorobenzyl alcohol được FDA (Food and Drug Administration – Cục quản lý thực phẩm và Dược phẩm Hoa Kỳ) phân loại vào thành phần không hoạt động đối với các sản phẩm thuốc đã được phê duyệt.
Điều chế sản xuất Dichlorobenzyl alcohol
2,4-dichlorobenzyl alcohol thu được có độ tinh khiết cao và cho năng suất cao, bằng cách cho 2,4-dichlobenzyl cloride trải qua hai giai đoạn, phản ứng với muối tan trong nước của một axit hữu cơ, với sự có mặt của chất xúc tác chuyển pha để tạo ra 2,4-dichlobenzyl ester của axit hữu cơ sau đó bị thủy phân với một bazơ mạnh.
-
Giai đoạn đầu tiên: Gia nhiệt 2,4-dichlorobenzyl chloride và dung dịch nước của muối hòa tan trong nước của một axit hữu cơ, cụ thể là Natri axetat (được chọn từ nhóm bao gồm natri axetat, kali axetat và amoni axetat), được hồi lưu với sự có mặt của chất xúc tác chuyển pha (một muối tetrabutylammonium được chọn trong nhóm bao gồm muối alkylamoni, ankylamoni halogenua chuỗi dài, hợp chất arylalkylamoni và alkylphosphonium halogenua), tạo thành este 2,4-dichlorobenzyl của axit hữu cơ.
-
Giai đoạn thứ hai: Đun nóng este 2,4-dichlorobenzyl với một bazơ mạnh (NaOH - sodium hydroxide) để thủy phân este tạo ra 2,4-dichlorobenzyl alcohol.
Cơ chế hoạt động
Việc sử dụng Dichlorobenzyl alcohol có liên quan đến đặc tính kháng khuẩn, kháng virus và gây tê cục bộ. Tác dụng gây tê cục bộ của Dichlorobenzyl alcohol được cho là do giảm sự phong tỏa kênh natri. Cơ chế tác dụng sát trùng của Dichlorobenzyl alcohol chưa được hiểu đầy đủ nhưng nó được cho là có liên quan đến sự biến tính của các protein bên ngoài và sự sắp xếp lại của bậc ba cấu trúc các protein.
Dichlorobenzyl alcohol được giải phóng gần như ngay lập tức và đạt nồng độ đỉnh sau 3-4 phút. 50% nồng độ liều dùng tập trung trong nước bọt sau 120 phút. Dichlorobenzyl alcohol chuyển hóa qua gan tạo thành hippuric acid.
ATP là gì?
Mọi sinh vật sống trên trái Đất đều cần năng lượng để hoạt động cũng như thúc đẩy quá trình trao đổi chất trong cơ thể. ATP là viết tắt của cụm từ Adenosin Triphosphat, chính là nguồn cung cấp năng lượng sinh học chủ yếu này cho cơ thể sinh vật. Nói một cách khác, ATP là phân tử mang năng lượng, chúng có chức năng vận chuyển năng lượng đến nơi mà các tế bào cần sử dụng.
Không ít người lầm tưởng rằng chất dinh dưỡng từ thức ăn chính là năng lượng sống mà chúng ta sử dụng. Thực tế thì sau khi tiêu hóa thức ăn, cơ thể sẽ dự trữ các chất dinh dưỡng dưới dạng carbohydrates (tinh bột), fat (chất béo) hay protein (chất đạm). Các chất này lại được phân giải thành hợp chất đơn giản hơn đó là glucose, acid amin, acid béo và theo đường máu vận chuyển đến các tế bào.
Tuy nhiên, các tế bào không thể trực tiếp lấy năng lượng từ những chất dinh dưỡng này. Chính vì vậy, chúng ta cần có các hệ năng lượng giúp xử lý, biến đổi chúng thành ATP. Các ATP này sẽ dự trữ và cung cấp năng lượng có thể sử dụng được cho các tế bào khi cần. Quá trình này không chỉ ra trong tất cả các loại động vật, thực vật và vi khuẩn (và ngay cả trong virus khi chúng đang di chuyển trong các vật chủ)
Trong tự nhiên, ATP chỉ có thể được tìm thấy trong một số loại thảo dược quý giá “Đông trùng hạ thảo” hay linh chi.
Điều chế và sản xuất
Cấu tạo của một ATP cơ bản bao gồm:
Adenine: Một cấu trúc vòng bao gồm các nguyên tử C, H và N.
Ribose: Một phân tử đường có 5 Carbon.
Phần đuôi với 3 phân tử phosphat vô cơ (Pi). Liên kết giữa 2 Pi cuối cùng chứa rất nhiều năng lượng. Do đó việc phân tách các phần này chính là mấu chốt của quá trình giải phóng năng lượng của ATP.
ATP có thể được tạo ra từ đường đơn và đường phức tạp cũng như từ lipid thông qua phản ứng oxy hóa khử. Để điều này xảy ra, trước tiên carbohydrate phải được phân hủy thành đường đơn, trong khi chất béo phải được chia thành axit béo và glycerol. Tuy nhiên, quá trình sản xuất ATP được điều chỉnh rất cao. Sản xuất của nó được kiểm soát thông qua nồng độ cơ chất, cơ chế phản hồi và cản trở dị ứng.
Cơ chế hoạt động của ATP
Trong môi trường ống nghiệm, khi một phân tử glucose phân tách thành CO2 và nước đồng thời sẽ giải phóng khoảng 686 kcal/mol. Năng lượng này được tỏa ra dưới dạng nhiệt năng và phải sử dụng máy hơi nước thì mới có thể chuyển thành công cơ học. Hiển nhiên điều này là không thể xảy ra trong môi trường tế bào.
Nhờ có các ATP, nguồn năng lượng phân giải này sẽ được cất trữ vào trong đó. Khi tế bào cần năng lượng, ATP sẽ được thủy phân làm gãy liên kết giữa Oxi với nguyên tử photphat cuối cùng. Kết quả quá trình này sẽ tạo ra một phân tử phosphat vô cơ (Pi), một ADP (Adenosin Diphosphat) và khoảng 7 kcal/mol năng lượng. Lúc này, ADP sẽ ngay lập tức được chuyển đổi trở lại thành ATP nhờ có enzyme ATP synthase nằm trong màng ti thể.
Tên gọi, danh pháp
Tên Tiếng Việt: Đạm trúc diệp.
Tên khác: Cỏ lá tre, Cỏ lông lợn, Nhả mạy phẻo, Co tạng pầu, Mác pang pầu.
Tên khoa học: Lophatherum gracile Brongn thuộc họ Lúa (Poaceae).
Đặc điểm tự nhiên
Đạm trúc diệp là một loại cây cỏ sống lâu năm, có rễ phình thành củ và nhiều nhánh cứng. Thân cây cao từ 0.6 đến 1.5 mét, mọc thẳng đứng và có đốt dài. Lá mềm, hình mác dài và nhọn, có chiều dài khoảng 10 đến 15cm và chiều rộng 2 đến 3cm. Các lá phía trên thường ít lông, mặt dưới lá nhẵn, cuống lá mảnh và liền với bẹ dài, ôm lấy thân cây. Hoa mọc thành chuỗi thưa, có độ dài từ 15 đến 45cm, với những bông nhỏ dài khoảng 7 đến 12mm. Quả có hình dạng thoi dài, đạt khoảng 4mm.
Phân bố, thu hái, chế biến
Loài cây này có nhiều dạng và phân bố rộng rãi trong nước ta, đặc biệt là ở những vùng rừng thưa hoặc đồi cỏ. Ngoài ra, nó cũng được tìm thấy ở Trung Quốc, Nhật Bản và Malaysia.
Thường vào tháng 5-6, cuối mùa hoa, người ta hái toàn bộ cây về và cắt bỏ rễ con, sau đó chia thành từng bó nhỏ để phơi hay sấy khô. Thuốc thường bao gồm cả rễ con và đôi khi cả cụm hoa.
Bộ phận sử dụng
Bộ phận được sử dụng làm thuốc của đạm trúc diệp là rễ hoặc lá.

Dipotassium Glycyrrhizate là gì?
Dipotassium glycyrrhizate (DPG) là muối kali của acid glycyrrhizic (glycyrrhizin) – thành phần chính trong chiết xuất rễ cây cam thảo Glycyrrhiza glabra, họ đậu Fabaceae.
Trong mỹ phẩm và các sản phẩm chăm sóc cá nhân, các nhà sản xuất đã đưa vào Dipotassium glycyrrhizate nhằm mục đích nuôi dưỡng, kháng viêm và làm dịu da, đồng thời cũng là chất nhũ hóa và tạo gel cho sản phẩm. Dipotassium Glycyrrhizate được dùng để dưỡng da, làm dịu làn da bị kích ứng. Trong công thức, Dipotassium Glycyrrhizate là thành phần có vai trò hỗ trợ cải thiện kết cấu.
Trừ những người được xác định là dị ứng với Dipotassium Glycyrrhizate, thành phần này phù hợp với mọi loại da. Tuy nhiên, nhược điểm của Dipotassium glycyrrhizate là không được hấp thụ tốt vào da.
Bên cạnh đó, từ hàng nghìn năm trước, chiết xuất rễ cây cam thảo đã được sử dụng trong y học cổ truyền Trung Quốc với công dụng nổi tiếng là làm dịu vùng mô bị viêm cũng như hỗ trợ loại bỏ đờm và chất nhầy ra khỏi đường hô hấp. Do đó, cam thảo có thể chữa được mọi thứ từ cảm lạnh thông thường cho đến bệnh gan.
Điều chế sản xuất Dipotassium Glycyrrhizate
Dipotassium Glycyrrhizinate là hoạt chất được tinh chế đặc biệt từ rễ cam thảo, dạng bột, tan nước có khả năng kháng viêm tốt.
Người ta chỉ lấy những phần cần thiết trong cam thảo để phục vụ mục đích kháng viêm, kháng khuẩn, làm trắng và chống kích ứng da thôi, nên hiệu quả của Dipotassium Glycyrrhizinate vượt trội so với bột cam thảo hay nước chiết xuất cam thảo bình thường. Đây là lầm tưởng của nhiều người khi cho rằng bột cam thảo nào cũng có tác dụng kháng viêm và giảm kích ứng tốt như nhau.
Cơ chế hoạt động của Dipotassium Glycyrrhizate
Dipotassium Glycyrrhizinate là một chất chống viêm được sử dụng rộng rãi được phân lập từ rễ cây cam thảo. Nó được chuyển hóa thành Glycyrhetinic Acid, ức chế 11-beta-Hydroxysteroid Dehydrogenases và các enzym khác liên quan đến quá trình chuyển hóa Corticosteroids.
Dipotassium Glycyrrhizinate có khả năng làm sáng da đáng kể nhờ vào việc ức chế sắc tố, phân tán melanin, ức chế sinh tổng hợp melanin và ức chế enzym cyclooxygenase. Nói cách khác, Melanin bị ức chế không được di chuyển cũng như không xuất hiện trên bề mặt da.
Sản phẩm liên quan