Ferulic acid
Phân loại:
Thành phần khác
Mô tả:
Ferulic Acid là gì?
Trong các sản phẩm chống lão hóa da, Ferulic Acid là hoạt chất thường thấy với hiệu quả không thua kém Retinol.
Thuộc gốc acid hydroxycinnamic và có nguồn gốc từ thực vật, Ferulic Acid được tìm thấy tự nhiên trong lá và hạt của hầu hết các loại thực vật, đặc biệt có rất nhiều trong phần cám của các loại hạt như gạo, lúa mì và yến mạch.

Ferulic Acid có khả năng làm chậm quá trình lão hóa nên hoạt chất này có mặt phổ biến trong mỹ phẩm chăm sóc da. Ngoài ra, nhờ khả năng kháng khuẩn, chống viêm và chống oxy hóa nên các nhà sản xuất cũng bổ sung Ferulic Acid vào trong các sản phẩm trị mụn và chống lão hóa da.
Ferulic Acid có khả năng chống lại các gốc tự do, hiệu quả vượt trội làm chậm lại quá trình oxy hóa. Ferulic Acid còn giúp ổn định và tăng hiệu quả hoạt động của các hoạt chất chống oxy hóa khác. Đó là những ưu điểm tuyệt vời mà Ferulic Acid mang lại cho quá trình chăm sóc, bảo vệ làn da.
Điều chế sản xuất Ferulic Acid
Ferulich Acid là một dẫn xuất acid hydroxycinnamic. Loại acid này thu được từ phương pháp thủy phân.

Cơ chế hoạt động của Ferulic Acid
Là chất chống oxy hóa nên Ferulic Acid có thể ức chế các enzyme tạo ra gốc tự do. Những gốc tự do này chính là nguyên nhân chủ yếu khiến da mất dần độ đàn hồi và săn chắc, đồng thời còn làm hình thành nếp nhăn. Đặc tính của Ferulic Acid sẽ giúp giải quyết vấn đề lão hóa da một cách hiệu quả.
Dược động học:
Dược lực học:
Xem thêm
Hydrogenated Polydecene là gì?
Hydrogenated Polyisobutene là một chất lỏng không màu, thành phần này được sử dụng trong công nghệ mỹ phẩm. Cấu trúc phân tử của thành phần được hình thành không quá phức tạp vì vậy Hydrogenated Polyisobutene có độ ổn định cao, dễ dàng nhũ hóa, khi sử dụng.
Hydrogenated Polyisobutene là một chất làm mềm có thể tạo thành khi Polydecene được hydro hóa. Trên bề mặt da thành phần này tạo thành một lớp màng nhưng vẫn thông thoáng không bị bí tắc. Đặc biệt thành phần có thể tạo độ bóng và không gây nhờn cho da. Đã có nhiều nghiên cứu chứng minh cho khả năng làm mềm của Hydrogenated Polydecene. Họ đã thực hiện bằng cách thử nghiệm trên những người có làn da khô. Kết quả của nghiên cứu rất khả quan. Những người có da khô được sử dụng Hydrogenated Polydecene đều đặn 2 lần/ngày, làn da có biến chuyển cải thiện rất tốt. Ở một nghiên cứu khác, cuộc thử nghiệm bôi Hydrogenated Polydecene lên vùng vết chân chim của một số người, nếp nhăn đã giảm đáng kể.

Sử dụng nó trên da thì Hydrogenated Polyisobutene và các phân tử sẽ liên kết tạo một lớp màng mỏng bảo vệ, ngăn cản sự thoát nước giữ độ ẩm cho da. Chất này có thể thay thế cho một loại dầu khoáng vì dầu khoáng không có lợi cho sức khỏe con người và làn da. Hydrogenated Polyisobutene nó là một chất làm mềm dưỡng ẩm cho da khiến da, không bị nhờn. Hoạt chất còn có thể thay thế cho các silicon dễ bay hơi.
Hydrogenated Polydecene là một chất làm mềm lý tưởng cho các sản phẩm chăm sóc em bé vì nó tinh khiết và không gây dị ứng.
Điều chế sản xuất
Hydrogenated Polydecene là hỗn hợp của những hydrocacbon, hoạt chất bão hòa từ C30H62-C70H142 đó là quá trình được tạo ra oligome hóa trực tiếp. Đem hỗn hợp oligomer chưng cất đến từng phần nhỏ của độ nhớt được theo công thức phù hợp. Tiếp theo là hydro hóa để đạt đến độ bão hòa, tiếp tục chưng cất sao cho độ nhớt đạt yêu cầu. Độ nhớt và hàm lượng của oligomer khác nhau đối với các loại Polydecene hydro hóa khác nhau theo điều kiện và trọng lượng riêng. Polydecene đã hydro hóa để chứa chất ổn định phù hợp với yêu cầu.
Cơ chế hoạt động
Thông tin về thành phần này trong mỹ phẩm hiện còn khá khiêm tốn. Về cơ chế hoạt động của Hydrogenated Polydecene đối với làn da cũng chưa có báo cáo cụ thể.
Sodium Laureth Sulfate là gì?
Sodium Laureth Sulfate (hay còn gọi là Natri Laureth Sulfate) là chất tẩy rửa gốc sulfate được tìm thấy trong dừa. Nhờ chứa lượng cồn béo cao mà Sodium Laureth Sulfate có thể mang lại tác dụng làm sạch da hiệu quả và dịu nhẹ. Nhiều người thường nhầm lẫn Sodium Laureth Sulfate với thành phần Sodium Lauryl Sulfate - dù không phải là chất độc hại nhưng được biết đến là thành phần có thể gây khô da và kích ứng.

Các chuyên gia đã khẳng định, thành phần Sodium Laureth Sulfate là an toàn cho việc sử dụng trong các sản phẩm chăm sóc da. Bởi không như các sulfate ether hoạt tính mạnh khác, thành phần Sodium Laureth Sulfate không chứa cồn ethyl/isopropyl nên không có khả năng gây ra hỏa hoạn.
Điều chế sản xuất
Sodium Laureth Sulfate được điều chế bằng cách etoxyl hóa dodecanol. Sản phẩm etoxylat sau đó được chuyển thành hợp chất cơ sunfat (este một lần với axit sunfuric), tiếp theo sẽ được trung hòa để tạo thành muối natri.
Cơ chế hoạt động
Sodium Laureth Sulfate có cơ chế hoạt động bề mặt, tạo bọt để làm sạch và trôi các vi khuẩn/chất bẩn.
L-valine là gì?
L-valine là đồng phân đối hình L của valine, hoạt chất có vai trò như một chất dinh dưỡng; vi chất dinh dưỡng; chất chuyển hóa tảo; chất chuyển hóa Saccharomyces cerevisiae; chất chuyển hóa ở người; chất chuyển hóa Escherichia coli và chất chuyển hóa của chuột. Vai trò của L-Valine là axit amin thiết yếu, có hoạt tính kích thích. Hoạt chất này thúc đẩy sửa chữa mô và phát triển cơ bắp. Thành phần này là một axit amin họ pyruvate có thể tạo protein, một valine và một axit amin L-alpha. Hoạt chất là một cơ sở liên hợp của một L-valinium, axit liên hợp của một L-valinat. Đồng thời L-valine cũng là một chất đồng phân đối quang của một D-valine, đồng phân của một zwitterion L-valine.
Điều chế sản xuất
Thủy phân protein, được tổng hợp bằng phản ứng của amoniac với axit alpha-chloroisovaleric. Các axit amin được kết hợp trong protein của động vật có vú là axit amin alpha, ngoại trừ proline, là axit alpha-imino. Điều này có nghĩa là chúng có một nhóm cacboxyl, một nhóm nitơ amin và một chuỗi bên được gắn với một cacbon alpha trung tâm.

Sự khác biệt về chức năng giữa các axit amin nằm trong cấu trúc của chuỗi bên của chúng. Ngoài sự khác biệt về kích thước, các nhóm phụ này mang điện tích khác nhau ở pH sinh lý (ví dụ, không phân cực, không tích điện nhưng có cực, tích điện âm, tích điện dương); một số nhóm kỵ nước (ví dụ, chuỗi phân nhánh và các axit amin thơm) và một số ưa nước (hầu hết các nhóm khác). Các chuỗi bên này có vai trò quan trọng đối với cách thức ổn định các bậc cao hơn của cấu trúc protein và là những bộ phận thân thiết của nhiều khía cạnh khác của chức năng protein.
Cơ chế hoạt động
L-valine được hấp thụ từ ruột non bằng quá trình vận chuyển tích cực phụ thuộc natri. Nồng độ trong máu và mô của các axit amin chuỗi nhánh (BCAA) bị thay đổi do một số bệnh và trạng thái sinh lý bất thường, bao gồm bệnh đái tháo đường, rối loạn chức năng gan, đói, suy dinh dưỡng protein-calo, nghiện rượu và béo phì. Những điều kiện này và các điều kiện khác đôi khi tạo ra những thay đổi mạnh mẽ trong các bể BCAA trong huyết tương.
Mặc dù các axit amin tự do hòa tan trong dịch cơ thể chỉ chiếm một tỷ lệ rất nhỏ trong tổng khối lượng axit amin của cơ thể, nhưng chúng rất quan trọng đối với việc kiểm soát dinh dưỡng và trao đổi chất của protein trong cơ thể... Mặc dù ngăn huyết tương dễ lấy mẫu nhất, nhưng nồng độ của hầu hết các axit amin cao hơn trong các bể nội bào của mô.
Thông thường, các axit amin trung tính lớn, chẳng hạn như leucine và phenylalanin, về cơ bản ở trạng thái cân bằng với huyết tương. Những thứ khác, đặc biệt là glutamine, axit glutamic và glycine, tập trung nhiều hơn từ 10-50 lần trong vùng nội bào. Sự thay đổi chế độ ăn uống hoặc tình trạng bệnh lý có thể dẫn đến những thay đổi đáng kể về nồng độ của các axit amin tự do riêng lẻ trong cả hồ huyết tương và mô.
Sau khi ăn vào, protein bị biến tính bởi axit trong dạ dày, nơi chúng cũng bị phân cắt thành các peptit nhỏ hơn bởi enzim pepsin, được kích hoạt bởi sự gia tăng axit trong dạ dày xảy ra khi cho ăn. Sau đó, protein và peptit sẽ đi vào ruột non, nơi các liên kết peptit bị thủy phân bởi nhiều loại enzym. Các enzym đặc hiệu liên kết này bắt nguồn từ tuyến tụy và bao gồm trypsin, chymotrypsins, elastase và carboxypeptidases.
Sau đó, hỗn hợp kết quả của các axit amin tự do và các peptit nhỏ được vận chuyển vào các tế bào niêm mạc bởi một số hệ thống chất mang đối với các axit amin cụ thể và đối với các di - và tri-peptit, mỗi loại cụ thể đối với một số cơ chất peptit giới hạn. Sau khi thủy phân nội bào của các peptit được hấp thụ, các axit amin tự do sau đó được tiết vào máu cổng bởi các hệ thống chất mang cụ thể khác trong tế bào niêm mạc hoặc tiếp tục được chuyển hóa trong chính tế bào. Các axit amin được hấp thụ sẽ đi vào gan, nơi một phần của các axit amin được tiếp nhận và sử dụng; phần còn lại đi vào hệ tuần hoàn và được sử dụng bởi các mô ngoại vi.
Sự tiết protein vào ruột vẫn tiếp tục ngay cả trong điều kiện cho ăn không có protein, và lượng nitơ mất đi trong phân (tức là nitơ bị mất khi vi khuẩn trong phân) có thể chiếm 25% lượng nitơ mất đi bắt buộc. Trong hoàn cảnh ăn kiêng này, các axit amin được tiết vào ruột dưới dạng thành phần của các enzym phân giải protein và từ các tế bào niêm mạc bong tróc là nguồn axit amin duy nhất để duy trì sinh khối vi khuẩn đường ruột... Các con đường mất axit amin nguyên vẹn khác là qua nước tiểu và qua da và rụng tóc. Những tổn thất này là nhỏ so với những tổn thất được mô tả ở trên, nhưng vẫn có thể có tác động đáng kể đến các ước tính về yêu cầu, đặc biệt là trong tình trạng dịch bệnh.
Polyglyceryl - 2 Triisostearate là gì?
Polyglyceryl - 2 Triisostearate là một chất diester của axit isostearic và diglycerine. Nó thuộc về một nhóm được gọi là este axit béo polyglyceryl. Đây là một chất lỏng có hiệu quả trong việc phân tán sắc tố vô cơ, nên thường được sử dụng trong các mỹ phẩm có màu.
Công thức hóa học của Polyglyceryl - 2 Triisostearate
Điều chế sản xuất Polyglyceryl-2 Triisostearate
Axit béo có trong dầu dừa và dầu cọ được sử dụng trong nhiều sản phẩm mỹ phẩm. Là chất lỏng sền sệt màu hơi vàng, có mùi thơm đặc trưng của axit béo.
Cơ chế hoạt động
Một chất nhũ hóa hiệu quả cho các công thức nước trong dầu
Polyglyceryl - 2 Triisostearate đặc biệt nhẹ nhàng trên da và dịu nhẹ, lý tưởng cho các sản phẩm dành cho da nhạy cảm. Chất nhũ hóa đặc biệt linh hoạt trong quá trình sản xuất, có thể sử dụng được cả trong các công thức của Quy trình nóng và lạnh.
Khả năng phân tán
Polyglyceryl- 2 Triisostearate có khả năng phân tán vượt trội của các chất màu vô cơ; khả năng tương thích tốt với các loại dầu và sáp; độ ổn định oxy hóa cao.
Sucrose Dilaurate là gì?
Sucrose Dilaurate là chất phân hủy axit lauric và Sucrose. Sucrose Dilaurate là một Este axit béo Sucrose.
Este axit béo sacaroza là các este của đường sacaroza với các axit béo ăn được. Chúng có thể được điều chế từ sacaroza và metyl và etyl este của axit béo ăn được thường khi có mặt của dung môi. Một quy trình khác là phản ứng chất béo hoặc dầu ăn được và sacaroza để tạo ra một hỗn hợp các este sacaroza của axit béo và mono- và diglycerid, chúng đôi khi được gọi là “sucroglycerid”.
Este axit béo Sucrose gồm Sucrose Dilaurate, Sucrose Distearate, Sucrose Hexaerucate; Sucrose Hexaoleate / Hexapalmitate / Hexastearate, Sucrose Hexapalmitate,.... bao gồm sucrose, còn được gọi là đường ăn, kết hợp với các axit béo cụ thể khác nhau, hoặc sucrose kết hợp với hỗn hợp các axit béo từ các loại thực vật cụ thể (Sucrose Cocoate, Sucrose Polycottonseedate, Sucrose Polypalmate, Sucrose Polysoyate). Nhiều axit béo, bao gồm Axit Stearic, Axit Lauric, Axit Myristic, Axit Oleic, Axit Palmitic và Axit Dừa có trong thực phẩm.
Trong mỹ phẩm và các sản phẩm chăm sóc cá nhân, Sucrose Fatty Acid Esters được sử dụng trong nhiều loại sản phẩm như sản phẩm tắm, sản phẩm làm sạch, sản phẩm trang điểm, chế phẩm tay và cơ thể, sản phẩm chống nắng và dầu gội.
Sucrose Dilaurate là chất bột màu trắng. Mặc dù được sản xuất từ sucrose, các este sucrose không có vị ngọt mà nhạt hoặc đắng.
Công thức hóa học của Sucrose Dilaurate
Các tính chất của Sucrose Dilaurate là:
Ổn định nhiệt
Điểm nóng chảy của Sucrose Dilaurate là từ 40 ° C đến 60 ° C.. Các este sucrose có thể được đun nóng đến 185 ° C mà không làm mất chức năng của chúng.
PH ổn định
Sucrose Dilaurate bền trong pH từ 4 đến 8, vì vậy chúng có thể được sử dụng như một chất phụ gia trong hầu hết các loại thực phẩm. Ở pH cao hơn 8, quá trình xà phòng hóa (thủy phân liên kết este để giải phóng sacaroza ban đầu và muối của axit béo) có thể xảy ra. Quá trình thủy phân cũng có thể xảy ra ở pH thấp hơn 4.
Điều chế sản xuất Sucrose Dilaurate
Sucrose pha loãng có thể được phân tích bằng phương pháp HPLC pha ngược (RP) này với các điều kiện đơn giản. Pha động chứa axetonitril (MeCN), nước và axit photphoric. Đối với các ứng dụng tương thích với Mass-Spec (MS), axit photphoric cần được thay thế bằng axit formic. Các cột hạt nhỏ hơn 3 µm có sẵn cho các ứng dụng UPLC nhanh. Phương pháp sắc ký lỏng này có thể mở rộng và có thể được sử dụng để phân lập các tạp chất trong quá trình phân tách chuẩn bị. Nó cũng thích hợp cho dược động học.
Cơ chế hoạt động
Nhóm chất này rất đáng chú ý đối với phạm vi cân bằng ưa nước-ưa béo (HLB) mà nó bao gồm. Phần gốc sacaroza phân cực đóng vai trò là phần cuối ưa nước của phân tử, trong khi chuỗi axit béo dài đóng vai trò là phần cuối ưa béo của phân tử. Do đặc tính lưỡng tính này, các este sucrose hoạt động như chất nhũ hóa; tức là chúng có khả năng liên kết đồng thời cả nước và dầu.
Kẽm Glycinate là gì?
Kẽm là một khoáng chất vi lượng cần thiết cho chuyển hóa carbohydrate, protein và chất béo trong cơ thể. Kẽm còn là đồng yếu tố của hơn 300 enzym kim loại, đóng vai trò quan trọng trong sự tăng trưởng, sinh sản và phản ứng miễn dịch. Trong cơ thể, kẽm phân bố chủ yếu trong khoảng 57% ở cơ, 29% ở xương, 6% ở da, 5% ở gan, 1,5% ở não và 0,1% trong huyết tương.

Để đảm bảo cung cấp đủ kẽm cho cơ thể, chúng ta cần bổ sung kẽm hàng ngày thông qua chế độ ăn uống. Có nhiều dạng bổ sung kẽm khác nhau, trong đó kẽm glycinate là một lựa chọn phổ biến. Kẽm glycinate là một nguồn kẽm hữu cơ, có đặc tính hóa lý và hoạt tính sinh học tốt. Nó được coi là một chất bổ sung kẽm lý tưởng và mới mẻ.
Một trong những ưu điểm của kẽm glycinate là khả năng giảm tác động tiêu cực đến môi trường. Việc sử dụng kẽm hữu cơ như kẽm glycinate có thể giảm bài tiết kẽm vào môi trường qua phân, giúp giảm tác động tiêu cực lên môi trường.
Điều chế sản xuất kẽm Glycinate
Kẽm glycinate được tạo thành từ Zn 2+ liên kết với axit amin Glycine. Phân tử glycine có khả năng tạo liên kết với ion kẽm (Zn2+) theo nhiều cách khác nhau. Nó có thể liên kết với kẽm thông qua một hoặc hai nguyên tử oxy trong nhóm carboxylate của glycine, hoặc thông qua các nguyên tử oxy và nitơ để tạo thành phức chất chelate.
Phương pháp điều chế kẽm glycinate bao gồm các bước:
- Bước 1: Tạo phức với muối: Cho glycine, kẽm cacbonat vô cơ và nước vào bình phản ứng, khuấy đều, đun nóng đến 70 - 90 độ C và làm cho carbon dioxide thoát ra để tạo ra kẽm glycat hóa.
- Bước 2: Sấy khô: Khử nước ly tâm kẽm glycinate thu được, chuyển vào tầng sôi và sấy khô ở nhiệt độ 100 - 120 độ C để thu được sản phẩm kẽm glycinate.

Cơ chế hoạt động
Glycine, là một axit amin có trọng lượng phân tử thấp nhất, có kích thước nhỏ giúp tạo điều kiện cho sự ổn định của kẽm trong cơ thể. Điều này giúp bảo vệ kẽm khỏi các phản ứng hóa học không mong muốn trong quá trình tiêu hóa, làm tăng khả năng hấp thụ và sử dụng sinh học của kẽm. Glycine có vai trò quan trọng trong việc bảo vệ tế bào ruột khỏi các tác nhân gây hại. Nó có thể được sử dụng làm chất nền để tổng hợp glutathione, một chất chống oxy hóa quan trọng, giúp bảo vệ tế bào khỏi tổn thương do oxy hóa. Ngoài ra, glycine cũng có khả năng kết hợp với các chất độc tố để giải độc sinh học. Tất cả những đặc điểm này của glycine đóng vai trò quan trọng trong việc bảo vệ và tối ưu hóa sự sử dụng kẽm trong cơ thể.
Methyl Hydroxybenzoate là gì?
Methyl Hydroxybenzoate là một loại paraben thường được sử dụng làm chất bảo quản để giúp sản phẩm có thời hạn sử dụng lâu hơn. Chúng được thêm vào thực phẩm hoặc mỹ phẩm để ngăn chặn sự phát triển của nấm mốc và các vi khuẩn có hại khác.
Methyl Hydroxybenzoate
Điều chế sản xuất
Trong khi hầu hết Methyl Hydroxybenzoate mà chúng ta nhìn thấy và sử dụng đều được sản xuất tổng hợp, Methyl Hydroxybenzoate tồn tại trong tự nhiên, thường được tìm thấy trong thực vật ở dạng Methyl Hydroxybenzoate để bảo vệ thực vật, do đặc tính chống nấm, chống vi khuẩn.
Cơ chế hoạt động
Cơ chế của Methyl Hydroxybenzoate có thể liên quan đến suy ty thể phụ thuộc vào sự cảm ứng chuyển đổi tính thấm màng kèm theo sự khử cực của ty thể và sự cạn kiệt ATP của tế bào thông qua sự tách rời của quá trình phosphoryl hóa oxy hóa.
L-Tryptophan là gì?
L-Tryptophan là một axit amin thiết yếu cần thiết để tạo ra protein. Thành phần này được tìm thấy tự nhiên trong thịt đỏ, thịt gia cầm, trứng và sữa.
L-tryptophan rất quan trọng đối với nhiều cơ quan trong cơ thể. L-tryptophan không được ơ thể tạo ra và phải được bổ sung từ chế độ ăn uống. Sau khi hấp thụ L-tryptophan từ thức ăn, cơ thể sẽ chuyển đổi một số thành 5-HTP và sau đó thành serotonin. Serotonin là một loại hormone truyền tín hiệu giữa các tế bào thần kinh. Những thay đổi về mức serotonin trong não có thể ảnh hưởng đến tâm trạng.

Mọi người sử dụng L-tryptophan cho các triệu chứng PMS nghiêm trọng, trầm cảm, chứng mất ngủ và nhiều tình trạng khác, nhưng không có bằng chứng khoa học rõ ràng về công dụng này.
Điều chế sản xuất L-Tryptophan
L-tryptophan chủ yếu được sản xuất bằng cách lên men vi sinh vật sử dụng Escherichia coli hoặc Corynebacterium glutamicum. Một E bị đột biến ngẫu nhiên. Chủng coli đã được chứng minh là tạo ra tới 54,6g/L L-tryptophan khi cho ăn các tiền chất L-tryptophan. Với những tiến bộ gần đây trong công nghệ phân tử, một số nghiên cứu đã được tiến hành trong nỗ lực tạo ra các chủng sản xuất L-tryptophan với các biến đổi gen xác định. Ví dụ, biến đổi gen của một chủng vi khuẩn Corynebacterium glutamicum sản xuất L-tryptophan có nguồn gốc cổ điển đã làm tăng sản xuất L-tryptophan lên 58g/L. E . coli chủng D pta/mtr -Y, được phát triển bởi Wang và cộng sự, đạt được sản lượng L-tryptophan là 48,68g/L.
Trong nghiên cứu này, các chủng đột biến FB-04 (Δpta) và FB-04 (ΔackA) được xây dựng để giảm sự tích tụ axetat. Việc xóa Pta hoặc accA dẫn đến giảm đáng kể sự hình thành axetat. Pta đóng một vai trò quan trọng hơn trong con đường Pta-AckA, xét về hiệu suất lên men của FB-04 (Δpta) và FB-04 (ΔackA). Mức axetat giảm có lợi cho sinh tổng hợp L-tryptophan, vì hiệu giá L-tryptophan được cải thiện được quan sát thấy ở FB-04 ( Δpta ) và FB-04 (ΔackA), so với FB-04. Đáng chú ý, việc loại bỏ pta đã đạt được sự gia tăng đáng kể hơn trong sản xuất L-tryptophan so với việc loại bỏ akA trong quá trình lên men bình lắc. Tuy nhiên, FB-04 (Δpta) biểu hiện sự tăng trưởng bị hạn chế nghiêm trọng, điều này phù hợp với những phát hiện trước đó.
Cơ chế hoạt động của L-Tryptophan
L-tryptophan là một axit amin thiết yếu nhưng cơ thể chúng ta lại không thể tự tổng hợp được. Thành phần này quan trọng đối với sự phát triển của cơ thể. Cơ thể sau khi hấp thụ L-tryptophan từ thực phẩm sẽ chuyển đổi nó thành 5-HTP (5-hydroxytryptophan) và sau đó là serotonin. Vai trò của serotonin là truyền tín hiệu giữa các tế bào thần kinh. Khi có sự thay đổi về mức độ của serotonin trong não sẽ tác động làm thay đổi giấc ngủ, tâm trạng và nhận thức.
Silicone là gì?
Silicone là một loại polyme tổng hợp, có tên rút ngắn từ từ “silicoketone”. Silicone bao gồm một sườn silicon - oxy và các nguyên tố khác bao gồm các nhóm hydrogen hoặc hydrocarbon gắn liền với nguyên tử silicon. Do có độ bền cao, ổn định và dễ sản xuất vì vậy silicone được ứng dụng rộng rãi và tìm thấy trong nhiều vật dụng hàng ngày, đặc biệt trong y tế, điều chế chất bịt kín, chất kết dính, dụng cụ nấu ăn, dùng trong thiết bị cách nhiệt và cách điện...
Công thức hóa học của Silicone
Đặc biệt, trong ngành công nghiệp làm đẹp, Silicone là thành phần hầu như có mặt trong tất cả các loại sản phẩm chăm sóc da. Nhờ đặc tính cảm quan và khả năng làm mềm cao hơn nhiều thành phần mỹ phẩm thông thường mà Silicone được khá ưa chuộng.
Thành phần Silicone có trong mỹ phẩm dưỡng da, kem nền, kem chống nắng như dimethicone, cyclomethicone và dimethiconol tạo ra sự mịn màng, căng mướt cho làn da nhưng không khiến da tiết nhờn và dầu, đồng thời, cải thiện cảm giác khó chịu do các thành phần khác gây ra. Dimethicone, cyclomethicone và dimethiconol phân tử lượng lớn sẽ tạo thành màng chống thấm nước trên da, có thể giúp kéo dài tác dụng chăm sóc da hoặc chống nắng.
Silicone là thành phần quen thuốc trong nhiều loại mỹ phẩm
Ngoài ra, Silicone còn chứa dimethicone copolyol - thành phần có mặt trong nhiều sản phẩm chăm sóc tóc, giúp giảm tình trạng khô và xơ rối ở tóc. Theo nghiên cứu, sản phẩm chăm sóc tóc chứa Silicone có thể giúp tăng cường độ bóng mượt của tóc lên 4 lần, tăng sự mềm mại, dễ chải và tạo lớp màng bảo vệ quanh sợi tóc bị hư tổn.
Silicone có 4 loại cơ bản:
-
Silicone lỏng: Silicone lỏng hay còn được gọi là dầu Silicone thường dùng để làm chất bôi trơn, phụ gia sơn, là các thành phần trong mỹ phẩm.
-
Silicone gel: Silicone gel là một dạng silicone lỏng được sử dụng nhiều trong các phòng thí nghiệm, ứng dụng trong y tế, dụng cụ nấu ăn. Ngoài ra, silicone gel này còn được sử dụng phổ biến trong các cuộc phẫu thuật thẩm mỹ để nâng ngực.
-
Silicone đàn hồi: Silicone đàn hồi (hay còn gọi là cao su silicone) được dùng như chất cách điện để hàn trong các phương tiện hàng không vũ trụ. Trong ngành y tế, Silicone cũng được sử dụng để sản xuất các sản phẩm chăm sóc sức khỏe như găng tay tẩy da chết, cốc nguyệt san, máy rửa mặt, máy hút sữa.
-
Silicone nhựa: Silicone nhựa được dùng trong các lớp phủ chịu nhiệt cũng như các vật liệu chống chịu thời tiết hay thậm chí dùng để trám những lỗ thủng nhỏ trên mái nhà, các vật dụng khác trong gia đình.
Thành phần chính của Silicone
-
Silicone lỏng: Dimethicone, Aminodimethicone , Dimethicone copolyol
-
Silicone đàn hồi: Dimethiconol, Dimethicone
-
Silicone gel: Vinyl dimethicone crosspolymer, Dimethicone crosspolymer
-
Silicone nhựa: Trimethysiloxysilicate, Polypropylsilsesquioxane, Polymethylsilsesquioxane
Điều chế sản xuất Silicone
Trong công nghiệp
Silicone được sản xuất bằng cách đun nóng silica và carbon trong lò điện hồ quang, trong đó sử dụng các điện cực carbon.
Phản ứng hóa học xảy ra trong lò điện:
SiO2 + 2C → Si + 2CO
2SiC + SiO2 → 3Si + 2CO
Điều chế Silicone siêu tinh khiết
Dạng điều chế này khá phổ biến và được thực hiện bằng cách nhiệt phân trichlorosilane cực kỳ tinh khiết trong khí hydrogan và bằng quá trình vùng nổi chân không.
Cơ chế hoạt động của Silicone
Như đã nói ở trên, Silicone chứa dimethicone copolyol – thành phần có trong các sản phẩm chăm sóc tóc có khả năng dưỡng nhẹ do hòa tan trong nước và mức độ bám dính thấp, làm giảm tính kích ứng mắt. Khác với các loại dầu gội và các sản phẩm tương tự có chứa diện hoạt anion, dimethicone hay dimethiconol dạng phân tử lượng lớn không tan trong nước, bám dính tốt do có ái lực với bề mặt tích điện âm của tóc nên hiệu lực cũng cao hơn.
Ngoài ra, chất nhũ hóa Silicone cho phép silicone dạng độ nhớt thấp liên tục kết hợp với các thành phần phân cực như nước và glycerin, giúp cho việc bào chế các loại sữa rửa mặt tạo bọt, làm sạch da để giúp loại bỏ bụi bẩn mà không tạo cảm giác châm chích.
Oleic Acid là gì?
Oleic Acid (hay còn gọi Omega 9), là một trong những axit béo tự nhiên, không bão hòa đơn. Oleic Acid có trong trong nhiều loại thực vật như hạt nho, ô liu và hắc mai biển…
Đặc biệt, trong dầu ô liu, Oleic Acid là axit béo chính, đảm nhận vai trò giảm cholesterol máu của loại dầu này.
Khác hai loại axit béo là omega-6 và omega-3, chất béo omega-9 không phải là “axit béo thiết yếu”. Nguyên nhân là vì chúng có thể được tổng hợp từ các axit béo không bão hòa.

Oleic Acid tồn tại ở dạng lỏng như dầu, màu vàng nâu hoặc vàng nhạt, có mùi giống như mỡ lợn. Oleic Acid dễ hòa tan trong nước.
Các loại thực phẩm chứa Oleic Acid hàng đầu thường có trong chất béo chất lượng như dầu hạt hướng dương, dầu oliu, dầu argan, dầu marula, dầu bơ, dầu hạnh nhân ngọt, dầu hắc mai biển, dầu đậu nành,...
Polymethylsilsesquioxane là gì?
Polymethylsilsesquioxane là một loại nhựa hạt mịn hình cầu bao gồm các hạt rất nhỏ có kích thước từ 4-6 micron. Kích thước hạt nhỏ này giúp nó thuận lợi phân phối trong các công thức để phát huy vai trò trong sản phẩm.
Polymethylsilsesquioxane có thể hòa tan dễ dàng trong Dimethicone 1.5, isododecane, Hydrogenated Polyisobutene… Loại silicone này khá được ưa chuộng trong công thức sản phẩm chăm sóc da và chăm sóc cá nhân do có khả năng hấp thụ bã nhờn, giúp da mịn màng, mượt mà; đồng thời còn tăng cường khả năng chống thấm nước, đặc biệt là với các sản phẩm son môi.

Polymethylsilsesquioxane nói riêng và các loại silicon khác nói chung mặc dù đã được chứng minh là an toàn và hiệu quả cho mục đích thẩm mỹ nhưng nhiều người dùng vẫn lo ngại vì những thông tin không an toàn khi sử dụng tại chỗ. Chúng ta biết là silicon có kích thước phân tử lớn nên sẽ ngăn không cho chúng bị da hấp thụ, như thế sẽ không thể phản ứng với các tế bào của hệ thống miễn dịch, không gây ra dị ứng. Mặt khác, do kích thước lớn mà silicon không thể xâm nhập vào da nên không thể đi qua màng tế bào, một yêu cầu quan trọng để tích lũy sinh học.
Điều chế sản xuất
Polymethylsilsesquioxane là polymer được hình thành từ quá trình thủy phân và ngưng tụ silicon methyltrimethoxysilane. Silicon là các polyme tổng hợp có từ các tiểu đơn vị siloxane (silic nguyên tố và oxy) nên silicones còn được gọi là polysiloxan.
Potassium stearate là gì?
Tên thường gọi: Potassium stearate.
PubChem CID: 23673840.
Tên gọi khác: Potassium octadecanoate; Rashayan potassium stearate; Octadecanoic acid, potassium salt; Steadan 300.
Potassium stearate được cấu thành từ muối và este của 18 cacbon no và acid đơn chức - axit stearic. Potassium stearate có công thức hóa học là C18H35KO2, trọng lượng phân tử là 322.6 g/mol.
Về tính chất, ở dạng ban đầu Potassium Stearate là một dạng bột mịn, màu trắng, có mùi béo.
-
Độ pH: 10 đến 11, dung dịch nước của nó có tính kiềm mạnh đối với quỳ tím hoặc phenolphtalein và dung dịch etanol của nó có tính kiềm yếu.
-
Độ ẩm: <6%.
-
Điểm sôi: 359 độ C đến 360 độ C.
-
Độ hòa tan: Hòa tan trong nước nóng, không hòa tan trong ete, chloroform và carbon disulfide.

Potassium stearate ứng dụng phổ biến trong nhiều loại mỹ phẩm chăm sóc da, chăm sóc tóc cũng như là thành phần phụ gia thực phẩm. Ngoài ra Potassium stearate còn được ứng dụng trong chất làm mềm dệt hay sản xuất cao su.
Điều chế sản xuất Potassium stearate
Potassium Stearate, là một muối kali của axit stearic được sản xuất thông qua quá trình tổng hợp hóa học từ Kali hydroxit và axit stearic, có sẵn dưới dạng bột mịn màu trắng.
Potassium stearate có nguồn gốc từ axit stearic, một sản phẩm phụ của quá trình xà phòng hóa dầu thực vật.
Axit stearic được tạo ra bởi các loại dầu và thể hiện các tính chất của axit béo. Axit stearic được tạo ra từ phản ứng xà phòng hóa chất béo trung tính bằng cách đun nóng dung dịch ở nhiệt độ 100 độ C. Sau đó, dung dịch tiếp theo được chưng cất. Axit stearic thường có sẵn là một axit hỗn hợp, tức là hỗn hợp của axit stearic và axit palmitic. Axit stearic xuất hiện tự nhiên trong dầu mỡ động vật và trong một số loại dầu thực vật.

Cơ chế hoạt động
Potassium Stearate là một chất nhũ hóa: Nó ngăn không cho phần dầu và chất lỏng của công thức phân tách. Nó cũng có thể làm tăng độ dày phần dầu của các sản phẩm mỹ phẩm.
Potassium stearate được sử dụng làm chất tẩy rửa tóc, mặt, cơ thể và như một chất đồng chuyển thể trong các sản phẩm chăm sóc da, mỹ phẩm và tạo kiểu tóc. Đồng thời, nó có tác dụng làm sạch tốt, có thể làm cho làn da tươi mới và sạch sẽ.
Potassium stearate được sử dụng chủ yếu trong mỹ phẩm và các sản phẩm chăm sóc da như một chất hoạt động bề mặt, chất làm sạch và chất nhũ hóa. Hệ số rủi ro là 1, tương đối an toàn và có thể được sử dụng một cách tự tin. Nói chung, nó không có ảnh hưởng đến phụ nữ mang thai. Potassium stearate không gây mụn.
Potassium stearat chủ yếu được sử dụng làm chất làm sạch và chất nhũ hóa. Nó có thể được sử dụng trong nhiều ứng dụng chăm sóc cá nhân và mỹ phẩm. Nó cũng được sử dụng trong sản xuất cao su và làm cơ sở cho chất làm mềm dệt.
Sản phẩm liên quan









