Squalane
Phân loại:
Thành phần khác
Mô tả:
Squalane là gì?
Dầu squalane chiếm 10-12% lượng dầu trên da, là một chất tự nhiên được sản xuất bởi các tuyến bã nhờn. Squalane là một chất chống oxy hóa tự nhiên, giúp giữ cho làn da luôn mềm mại, trẻ trung và ngậm nước. Khi càng lớn tuổi, việc sản xuất squalene có xu hướng giảm dần vì vậy, chúng ta nên bắt đầu dùng dầu squalane.
Squalane ban đầu hầu như chỉ được sản xuất nguyên liệu gốc từ gan của cá mập. Liên quan đến vấn đề bảo tồn động vật, nên hiện nay người ta chuyển qua chiết xuất dầu Squalane được từ các loại thực vật như dầu ô liu, gạo và mía.

Squalane là một chất làm mềm hoạt động giống như dầu (bã nhờn) của chính da để ngăn ngừa mất độ ẩm cho da. Hoạt chất này là một hydrocacbon, một nhóm các thành phần chỉ được tạo ra từ hydro và carbon. Squalane là chất chính từ thế giới thực vật, vì vậy nó là một lựa chọn thay thế tốt nếu bạn muốn tránh hóa dầu. Các hydrocacbon thân thiện với da tốt cho da bao gồm mỡ và dầu khoáng.
Squalane là một dạng biến đổi và là một trong những thành phần quan trọng trong bã nhờn ở da chúng ta. Vì vậy squalane trở thành một thành phần thân thiện giúp ẩm cho da một cách tự nhiên.
Điều chế sản xuất
Squalene được sinh tổng hợp bằng cách ghép hai phân tử farnesyl pyrophosphat lại với nhau. Quá trình ngưng tụ cần có NADPH và enzyme squalene synthase, squalene được điều chế thương mại từ geranylacetone.
Cơ chế hoạt động
Squalene là thành phần rất quan trọng để giảm tác hại của quá trình oxy hóa gốc tự do đối với da. Squalene huyết thanh bắt nguồn một phần từ sự tổng hợp cholesterol nội sinh và một phần từ các nguồn thực phẩm. Đặc biệt, là ở những quần thể tiêu thụ một lượng lớn dầu ô liu hoặc gan cá mập. Quá trình tổng hợp nội sinh của squalene bắt đầu bằng việc sản xuất 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA). Việc giảm HMG CoA ban đầu (một phản ứng phụ thuộc niacin) dẫn đến sự hình thành mevalonate.
Tuyến bã nhờn là những tuyến nhỏ trên da tiết ra chất nhờn trong nang lông để bôi trơn da và lông của động vật. Chúng được tìm thấy nhiều nhất trên da mặt và da đầu chúng ta, mặc dù chúng phân bố khắp các vị trí trên da ngoại trừ lòng bàn tay và lòng bàn chân. Squalene là một trong những thành phần chủ yếu (khoảng 13%) của bã nhờn.
Dược động học:
Dược lực học:
Xem thêm
Asiaticoside là gì?
Từ lâu, chúng ta đều đã biết đến những lợi ích của rau má đối với sức khỏe và làn da. Giống cây thân thảo này sinh trưởng nhiều trong môi trường nhiệt đới nên là nguồn nguyên liệu quen thuộc, dễ tìm trong đời sống.
Nhờ có đặc tính hàn (lạnh), tân (cay), khổ (đắng) mà rau má được dùng phổ biến trong hỗ trợ điều trị hạ huyết áp, tăng cường trí nhớ, thị lực,...

Thành phần của rau má
Nghiên cứu của y học hiện đại cho thấy, trong thành phần của rau má có chứa nhiều chất có lợi cho da và cơ thể, bao gồm:
-
Asiaticoside: 40%;
-
Asiatic Acid: 29 - 30%;
-
Madecassic Acid: 29 - 30%;
-
Madecassoside: 1 - 2%;
-
Calcium: 170mg;
-
Potassium: 414mg;
-
Phosphorous: 30mg;
-
Beta Carotene: 6.58mg;
-
Ascorbic acid 2.1:4mg;
-
Thiamine: 0.15mg;
-
Niacin: 1.2mg;
-
Riboflavin: 0.14mg.
Trong số bốn thành phần đầu bảng, Asiaticoside chính là chất chiếm tỷ lệ cao nhất nên được xem là chất điển hình với rất nhiều công dụng.
Asiaticoside có công thức phân tử là C48 H78 O19, khối lượng phân tử là 959,12 g/mol. Chất này là 1-O-acyl-D-glucose pyranose và là trisaccharide ester của acid asiatic. Nhờ khả năng kháng khuẩn và hoạt tính diệt nấm mà asiaticoside có thể chống lại mầm bệnh và nấm vô cùng hiệu quả. Hoạt tính sinh học nổi bật của asiaticoside là kháng khuẩn và ức chế vi khuẩn gây mụn P.acnes.
Asiaticoside có khả năng kích thích hệ reticuloendothelial, từ đó giúp sức miễn nhiễm cơ thể trở nên mạnh hơn. Thành phần này còn giúp tế bào da chống oxy hóa, phát triển mô liên kết, từ đó tế bào da mạnh lên, vết thương cũng mau lành hơn. Ngoài ra, các dẫn xuất của asiaticoside còn có khả năng bảo vệ thần kinh, chống lại độc tố β- amyloid gây hại đối với nơron thần kinh.
Các lợi ích của asiaticoside đã giúp cho sự hiện diện của rau má vô cùng phổ biến trong các thương hiệu chăm sóc da, khiến nó trở thành một thành phần thường xuyên được tìm thấy trong các sản phẩm khác nhau trên thị trường, từ kem dưỡng ẩm và thậm chí cả mỹ phẩm trang điểm.

Điều chế sản xuất
Rau má được rửa sạch, thái nhỏ, phơi, sấy khô, sau đó nghiền thành bột thô và bảo quản ở nơi khô thoáng.
Chiết xuất bằng phương pháp chiết nóng, với dung môi là nước, ở nhiệt độ 1000 độ C.
-
Phân lập hoạt chất bằng sắc ký cột silicagel pha thường (0,040 - 0,063mm, Merck), cột sắc ký lọc qua gel Sephadex LH 20.
-
Theo dõi các phân đoạn bằng sắc ký lớp mỏng pha thường pha thường (DC - Alufolien 60G F254 - Merck, ký hiệu 105715).
-
Phát hiện chất bằng đèn tử ngoại ở hai bước sóng 254 nm và 366 nm và dùng thuốc thử là dung dịch H2 SO4 10%/ethanol.
Xác định cấu trúc các hợp chất phân lập được dựa trên kết quả phổ cộng hưởng từ hạt nhân một chiều (1 H-NMR, 13C-NMR, DEPT). Phổ cộng hưởng từ hạt nhân đo trên máy Bruker Avance AM500 FT-NMR tại Viện Hoá học, Viện Khoa học và Công nghệ Việt Nam. Chất chuẩn nội là tetramethyl silan.
Quy trình chiết xuất bột rau má (2kg) được chiết nóng, với dung môi là nước (8 lít/ lần), ở nhiệt độ 1000 độ C, trong 3 lần, mỗi lần 2 giờ. Dịch chiết thu được sau 3 lần gộp chung, lọc qua bông, sau đó cô đọng dưới áp suất giảm đến dịch chiết đậm đặc.
Cơ chế hoạt động
Asiaticoside có thể nhanh chóng chữa lành vết thương là nhờ vào cơ chế kích thích tạo collagen cũng như tổng hợp glycosaminoglycan. Asiaticoside trong dịch chiết rau má có khả năng làm tan lớp màng bao phủ vi khuẩn để hệ thống miễn dịch của cơ thể dễ dàng tiêu diệt được chúng.
Tên gọi, danh pháp
Tên Tiếng Việt: Cây tắc kè đá.
Tên khác: Tổ rồng, Tổ phượng, Cốt toái bổ, Bổ cốt toái.
Tên khoa học: Drynaria bonii Christ thuộc, Họ Ráng (Polypodiaceae), Lớp Dương xỉ ( Polypodiaceae). Ở Việt Nam có mấy loài Tắc kè đá đều được dùng làm thuốc như: Drynaria fortunei J. Sm, Drynaria bonii Christ.
Đặc điểm tự nhiên
Tắc kè đá là loài thực vật sống cộng sinh trên đá hoặc những thân gỗ lớn. Thân rễ có dạng mầm như củ gừng, có lông và được phủ vảy màu vàng bóng.

Cây có 2 dạng lá trên cùng một cây. Một loại là lá hứng mùn thì khô, màu nâu ôm chặt vào thân và có hình trái xoan. Còn 1 loại lá khác là lá bình thường. Lá này thường dài 25 – 45cm, phiến lá màu xanh, lá xẻ thùy lông chim, mỗi lá gồm có 3 – 7 cặp lông chim, cuống dài 10 – 20cm. Lá hứng mùn có hình trái xoan, thường khô, có màu nâu và ôm lấy thân. Mặt dưới lá có các túi bào tử nằm rải rác không đều. Cốt toái bổ sinh sản bằng cách phán tán những bào tử này ra môi xung quanh vào tháng 5 - 6 hằng năm.
Drynaria fortunei J. Sm có lá xẻ răng cưa, bào tử xếp đều đặn còn Drynaria bonii Christ có mép lá lượn sóng, bào tử sắp xếp không đều.
Phân bố, thu hái, chế biến
Cây mọc hoang ở dọc suối, núi đá và trên những thân cây gỗ, những nơi có tiết trời ẩm thấp quanh năm. Ở nước ta Tắc kè đá tập trung nhiều ở các vùng Lạng Sơn, Cao Bằng, Đồng Nai, An Giang, Quảng Trị và Lâm Đồng. Ngoài ra cây Tắc kè đá cũng mọc nhiều ở Miền Trung và Miền Bắc nước Lào và Campuchia.

Thu hái thân rễ Tắc kè đá gần như quanh năm. Nhưng thời điểm thu hái tốt nhất là vào tháng 4 – 9 hằng năm.
Sau khi thu hoạch những thân rễ củ già, chọn lựa những củ có chất lượng tốt đem cạo bỏ lông, loại bỏ hết lá, sau đó thái phiến nhỏ và đem phơi khô. Khi dùng đem đốt nhẹ cho cháy hết lông phủ bên ngoài, đem thân rễ ủ cho mềm rồi tiếp tục tẩm mật và sao vàng tùy từng loại bệnh. Có thể dùng đơn độc hay kết hợp với các vị thuốc khác hợp thành bài thuốc.
Bộ phận sử dụng
Thân rễ của cây tắc kè đá (Tên dược liệu là Rhizoma Drynariae Bonii) - được thu hoạch để làm thuốc.
Boron Nitride là gì?
Boron Nitride là hợp chất không quá xa lạ với phái đẹp bởi loại hợp chất tạo hiệu ứng chiếu sáng này là một thành phần được sử dụng rộng rãi trong ngành công nghiệp mỹ phẩm. Ở điều kiện thường, Boron Nitride ở dạng bột màu trắng giống như bột talc, có thể phản chiếu lấp lánh dưới đèn màu.
Boron Nitride ở dạng bột màu trắng giống như bột talc
Boron Nitride xuất hiện trong các loại sản phẩm như kem nền, phấn phủ, son môi,… nhờ khả năng cải thiện độ láng mịn cho làn da. Đặc điểm nổi trội của Boron Nitride là khả năng liên kết các phân tử nhỏ giúp tăng cường độ bám dính trên bề mặt của các loại mỹ phẩm, giữ cho son môi, phấn phủ, kem nền được giữ lâu hơn và mang lại cảm giác mịn màng, căng bóng cho làn da. Đối với son môi, Boron Nitride là thành phần “vàng” bởi chúng có thể giúp lớp son được phân tán đều trên bề mặt môi mà không tạo cảm giác nhờn, rít.
Boron Nitride - thành phần quen thuộc trong nhiều loại mỹ phẩm
Điều chế sản xuất Boron Nitride
Trong phòng thí nghiệm, Boron Nitride được điều chế từ phản ứng hóa học giữa Boron trioxit (B2O3) hoặc Axit boric (H3BO3) với Amoniac (NH3) hoặc Urê (CO (NH2) 2) trong môi trường Nitơ:
B2O3 + 2NH3 → 2BN + 3 H2O (T =900°C).
B(OH)3 + NH3 → BN + 3H2O (T =900°C).
B2O3 + CO(NH2)2 → 2BN + CO2 + 2H2O (T >1000°C).
B2O3 + 3CaB6 + 10N2 → 20BN + 3CaO (T >1500°C).
Cơ chế hoạt động của Boron Nitride
Boron Nitride tồn tại ở nhiều dạng khác nhau, tương tự như dạng cấu trúc của Carbon. Hợp chất này hoạt động như một chất khoáng trong mỹ phẩm cải thiện khả năng bám dính của mỹ phẩm trên da.
Hydrogenated lecithin soybean là gì?
Lecithin là một hỗn hợp tự nhiên của các diglycerid của stearic, palmitic, và axit oleic, liên kết với este choline của axit photphoric, thường được gọi là phosphatidylcholine. Hydrogenated Lecithin là sản phẩm của quá trình hydro hóa Lecithin có kiểm soát. Các lớp kép của các phospholipid này trong nước có thể tạo thành liposome, một cấu trúc hình cầu, trong đó các chuỗi acyl nằm bên trong và không tiếp xúc với pha nước. Lecithin và Hydrogenated Lecithin được sử dụng trong một số lượng lớn các công thức mỹ phẩm như các chất dưỡng da - các chất khác và như các chất nhũ hóa chất hoạt động bề mặt
Điều chế sản xuất Hydrogenated lecithin soybean
Hydrogenated Lecithin soybean là một nguyên liệu thô, sự xuất hiện của lecithin hydro hóa có thể khác nhau tùy thuộc vào nguồn. Nó có thể được sản xuất tổng hợp hoặc có thể có nguồn gốc từ động vật (lòng đỏ trứng là một nguồn) hoặc thực vật.
Các mô tả Hydrogenated Lecithin soybean có từ dạng bột màu trắng đến màu be xám.
Hydrogenated Lecithin soybean là hoạt chất mỹ phẩm, các phospholipid tự nhiên được phân lập từ hạt đậu nành cung cấp các axit béo thiết yếu là axit linoleic và axit linolenic.
Hydrogenated Lecithin soybean được phân lập từ hạt đậu nành
Cơ chế hoạt động
Hydrogenated Lecithin soybean là một phospholipid được sản xuất bằng cách hydro hóa có kiểm soát thành phần phục hồi da lecithin. Hydrogenated Lecithin soybean đóng một vai trò để hóa lỏng lớp sừng và là chất tăng cường thâm nhập (phosphatidylcholine đậu nành) hoặc hoạt động như các hợp chất tăng cường chức năng hàng rào da (phosphatidylcholine đậu nành hydro hóa), là công thức một hộp công cụ có giá trị để thiết kế các sản phẩm mỹ phẩm tối ưu.
Cơ chế hoạt động của Hydrogenated Lecithin soybean là hòa tan tốt các vitamin A, D, E, K. Lecithin tinh chiết từ đậu nành là một loại phospholipid là một loại chất béo, góp phần tạo nên vị béo đặc trưng của sữa đậu nành nhưng không phải là hương đậu nành.
Acid fusidic là gì?
Acid fusidic là một loại kháng sinh steroid được sản xuất từ nấm Fusidium coccineum và được phát triển bởi công ty dược phẩm Leo Pharma ở Đan Mạch từ những năm 1960. Acid fusidic được sử dụng để điều trị nhiễm trùng do vi khuẩn do đó thuốc sẽ không có tác dụng đối với cảm lạnh, cúm hoặc các bệnh nhiễm vi-rút khác.
Acid fusidic và Natri fusidate có thể được sử dụng riêng lẻ hoặc kết hợp với liệu pháp toàn thân trong điều trị nhiễm trùng da nguyên phát và thứ phát do các chủng Staphylococcus aureus, Streptococcus và Corynebacterium minutissimum nhạy cảm gây ra.
Acid fusidic chỉ được bán theo toa của bác sĩ. Thuốc có nhiều dạng khác nhau như kem, thuốc mỡ và thuốc nhỏ mắt. Thuốc có thể được kết hợp với một steroid trong một số loại kem. Ngoài ra, thuốc cũng có thể được sử dụng bằng đường tiêm, hoặc dạng viên. Nhưng những hình thức này thường chỉ được chỉ định trong bệnh viện.

Điều chế sản xuất Acid fusidic
Điều chế Acid fusidic dạng kem
Natri fusidate là nguyên liệu thô ban đầu để điều chế ra Fusidic, Natri fusidate được chuyển thành Acid fusidic trong môi trường không có oxy (được tạo ra bằng cách sử dụng khí trơ).
- Đun nóng nước tinh khiết trong khoảng từ 20% đến 75%, tốt hơn là 35% đến 50%, tốt hơn nữa là 40% đến 43% trong bình pha nước ở nhiệt độ 70°C đến 80°C.
- Thêm vào bình pha nước nêu trên chất bảo quản, được chọn từ nhóm bao gồm Methylparaben, Propylparaben, Chlorocresol, Kali sorbate, Acid benzoic.
- Trộn hỗn hợp bằng máy khuấy ở tốc độ 10 đến 50 vòng/phút trong khi duy trì nhiệt độ của hỗn hợp ở 70°C đến 80°C.
- Thêm các vật liệu sáp bao gồm parafin mềm trắng, parafin lỏng, parafin cứng vào bình pha dầu và làm tan chảy sáp nói trên bằng cách đun nóng đến 70°C đến 80°C.
- Thêm vào bình pha dầu này chất nhũ hóa sơ cấp, tốt hơn là ở dạng chất hoạt động bề mặt không chứa ion, được chọn từ nhóm bao gồm rượu Cetostearyl, Cetomacrogol - 1000; chất nhũ hóa thứ cấp được chọn từ nhóm bao gồm Polysorbate - 80, Span - 80 và tương tự, tốt hơn là Polysorbate - 80 và trộn kỹ hỗn hợp, tốt nhất là sử dụng máy khuấy, ở tốc độ 10 đến 50 vòng/phút trong khi duy trì nhiệt độ của hỗn hợp ở 70°C đến 80°C.
- Chuyển hỗn hợp vào trong điều kiện chân không trong phạm vi từ âm 1000 đến âm 300mmHg và ở nhiệt độ 70°C đến 80°C và trộn kỹ hỗn hợp, tốt nhất là sử dụng một máy khuấy, ở tốc độ 10 đến 50 vòng/phút để tạo thành hỗn hợp nhũ tương.
- Làm nguội hỗn hợp này đến 45°C tốt hơn là bằng nước lạnh, tốt nhất là ở nhiệt độ 8°C đến 15°C.
- Trong bình API bổ sung đồng dung môi, được chọn từ nhóm bao gồm Propylene Glycol, Hexylene Glycol, PolyEthylene Glycol - 400; lượng chứa trong bình API này phải được xả bằng khí trơ, và hòa tan natri fusidat vào hỗn hợp.
- Điều chỉnh độ pH của hỗn hợp trong bình API xuống dưới 2 bằng cách sử dụng acid, bao gồm các acid như HCl, H2SO4, HNO3, Acid lactic.
- Chuyển lượng chứa trong bình API cũ sang bình trộn bằng cách khuấy liên tục ở tốc độ 10 đến 50 vòng/phút và đồng nhất hỗn hợp ở tốc độ 1000 đến 3000 vòng/phút trong điều kiện khí trơ và trong chân không từ âm 1000 đến âm 300mmHg, khí trơ tốt nhất là nitơ.
- Làm nguội bình trộn xuống 30°C đến 37°C bằng nước làm mát 8°C đến 15°C.

Điều chế Natri fusidat
Hòa tan Acid fusidic trong dung dịch cồn nồng độ thấp để thu được dung dịch Natri fusidat.
Cho dung dịch Etyl axetat vào dung dịch Natri fusidat để kết tinh Natri fusidat và thu thập chất rắn.
Làm khô chất rắn, nhờ đó thu được tinh thể Natri fusidat.
Cơ chế hoạt động
Acid fusidic là kháng sinh có cấu trúc steroid, nhóm fusidanin, có tác dụng kìm khuẩn và diệt khuẩn, chủ yếu trên vi khuẩn Gram dương.
Cơ chế hoạt động của acid fusidic là ức chế quá trình tổng hợp protein trong vi khuẩn bằng cách ổn định phức hợp yếu tố kéo dài G (EF-G), dẫn đến việc cắt ngắn độ giãn dài của peptide. Nó tác động vào một yếu tố cần thiết cho sự chuyển đoạn của các đơn vị phụ peptid và kéo dài chuỗi peptide. Mặc dù acid fusidic cũng có khả năng ức chế tổng hợp protein trong tế bào động vật có vú, nhưng nó không thâm nhập vào tế bào chủ một cách hiệu quả. Do đó, thuốc này có tác dụng chọn lọc chống lại các chủng vi khuẩn nhạy cảm.

Marigold là gì?
Cúc vạn thọ là loại cây thảo mọc đứng, cao 0,6-1m, phân nhánh thành bụi có cành nằm trải ra. Lá cúc vạn thọ xẻ sâu hình lông chim, các thuỳ hẹp, dài, nhọn, khía răng cưa. Đầu hoa toả tròn, rộng 3 - 4cm hay hơn, mọc đơn độc hay tụ họp thành ngù; lá bắc của bao chung hàn liền với nhau; hoa màu vàng hay vàng cam, màu lông gồm 6 - 7 vẩy rời nhau hoặc hàn liền nhau. Hoa ở phía ngoài hình lưỡi nhỏ xoè ra, hoa ở phía trong hình ống và nhỏ.
Quả bế có 1 - 2 vẩy ngắn., cây ra hoa vào mùa đông cho tới mùa hạ. Calendula officinalis (Cúc vạn thọ) thuộc họ thực vật có tên Asteraceae hay Compositae. Những cánh hoa nhỏ được thu hoạch và làm khô vì nhiều tính chất dùng để làm thuốc. Mặc dù có rất nhiều loài hoa cúc vàng (marigold flowers) được trồng trên khắp thế giới, nhưng Calendula (cúc vạn thọ) được dùng để làm thuốc nhiều nhất. Nó có nguồn gốc ở Ai Cập và một phần của Địa Trung Hải nhưng bây giờ đã phát triển ở mọi châu lục, thường nở trong những tháng nóng của năm (từ tháng 5 đến tháng 10 ở Bắc bán cầu).

Một số nghiên cứu chỉ ra rằng tinh chất hoa cúc vàng (marigold flowers extract) chứa nhiều thành phần hoạt tính, bao gồm các chất chống oxy hoá và dầu dễ bay hơi. Cúc vạn thọ chứa chất chống oxy hóa dưới dạng flavonoid và carotenoids. Ở cánh hoa có nhiều chất chống oxy hóa và các axit béo như axit calendric và axit linoleic. Ở lá của cúc vạn thọ chứa lutein và beta-carotene, có chức năng chống oxy hóa mạnh mẽ.
Điều chế sản xuất
Một số nghiên cứu đã phát triển nhũ tương dầu/nước, sử dụng dầu Cúc vạn thọ (Calendula officinalis L) và rượu béo etoxyl hóa làm chất hoạt động bề mặt. Giá trị HLB cần thiết cho dầu cúc vạn thọ được xác định là 6,0. Các chất hoạt động bề mặt được liên kết trong các cặp ưa béo/ưa nước. Các chất hoạt động bề mặt ưa béo là Ceteth ‐ 2 và Steareth ‐ 2 và các chất hoạt động bề mặt ưa nước là Steareth ‐ 20, Ceteareth ‐ 20, Ceteareth ‐ 5 và Ceteth ‐ 10. Để xác định các pha tinh thể lỏng, các nhũ tương được phân tích bằng kính hiển vi ánh sáng phân cực. Độ ổn định vật lý được đánh giá bằng phương pháp lưu biến và phân tích tiềm năng zeta. Tất cả các nhũ tương đều có cấu trúc tinh thể lỏng dạng phiến. Kết quả cho thấy loại chất hoạt động bề mặt này có thể tạo ra tinh thể lỏng trong hệ thống, với sự khác biệt nhỏ về bề ngoài, ảnh hưởng đến độ ổn định vật lý, theo các phương pháp đã áp dụng.
Việc phân lập được thực hiện bằng cách chiết xuất dung môi tuần tự của T. patula những bông hoa. Một mẫu gồm 600g nguyên liệu thực vật đã được nghiền thành bột khô được chiết bằng 1,2-dichloroethane trong thiết bị Soxhlet trong 48 giờ cho đến khi mất màu. Phần còn lại sau quá trình chiết tách dichloroethane được tái chiết xuất bằng etanol (tỷ lệ dung môi/chất thực vật 1: 5) để phân lập các hợp chất có độ phân cực cao hơn.
Các dung môi được làm bay hơi trong chân không ở 40°C để tạo ra chất chiết thô dicloroetan và etanol. Tiếp tục tách các hợp chất riêng lẻ khỏi dịch chiết dicloetan được thực hiện bằng sắc ký cột trên cột silica gel với hệ dung môi cloroform-hexan. Quá trình rửa giải các phân đoạn từ cột được bắt đầu bằng hexan với sự gia tăng thêm hàm lượng cloroform trong hệ thống. Sự rửa giải với 3% cloroform trong hexan cho hợp chất 1. Hợp chất 2 có trong phần được rửa giải từ cột với 5% cloroform trong hexan.
Dịch chiết etanol được tách trên cột silica gel bằng cách rửa giải với dicloroetan/metanol bằng phương pháp sắc ký lớp mỏng (TLC) để xác định đặc điểm sơ bộ của các phân đoạn. Quá trình rửa giải được bắt đầu với dichloroethane với sự gia tăng từng bước sau đó của hàm lượng metanol trong hệ thống.
Rửa giải với metanol 2, 3, 5, 7 và 10% trong dicloroetan tạo ra các phần tương ứng là 1, 2, 3, 4 và 5. Sắc ký lại của phân đoạn 2 trên cột Sephadex LH-20 với metanol 2% trong cloroform với sự tách TLC tiếp tục tạo ra hợp chất 2 cũng được tìm thấy trong dịch chiết dicloetan. Hợp chất 3 thu được bằng cách sắc ký lại phân đoạn 5 trên cột silica gel được rửa giải bằng metanol 8% trong cloroform và tiếp tục được tinh chế trên cột polyamit bằng cách rửa giải bằng etanol trong nước.
Quá trình phân tách TLC được thực hiện bằng các tấm silica gel Merck (Đức). Tách các hợp chất ưa béo được thực hiện trong hệ dung môi của dichloroethane-methanol (9: 1) và chloroform-methanol (9: 1). Các hợp chất phân cực hơn từ chiết xuất etanol được tách ra trong hệ dung môi của cloroform/metanol/nước (26: 14: 3).
Các sắc ký đồ được kiểm tra dưới ánh sáng UV ở bước sóng 254 và 360 nm, trước và sau khi sử dụng thuốc thử nhuộm để phát hiện flavonoid. Các flavonoid được phát hiện dưới dạng các đốm vàng lộ ra sau khi nung nóng các tấm được phun bằng dung dịch nhôm clorua etanol 1%. Các hợp chất khác được phát hiện bằng cách phun các dung dịch axit sunfuric 20%. Sau khi nung nóng các tấm phun đến 100°C, các hợp chất được tiết lộ dưới dạng các đốm có sắc thái từ xanh lam đến xanh lục, tùy thuộc vào các hợp chất cụ thể.
Cơ chế hoạt động
Cúc vạn thọ Pháp (Tagetes patula L.) được sử dụng rộng rãi trong y học dân gian, đặc biệt để điều trị các rối loạn liên quan đến viêm. Tuy nhiên, cơ chế tế bào của hoạt động này cần được nghiên cứu thêm. Trong một số nghiên cứu tiềm năng của các hợp chất T. patula để làm giảm bớt căng thẳng oxy hóa trong các tế bào T lymphoblastoid Jurkat ở người bị thách thức với hydrogen peroxide. Chiết xuất thô của hoa cúc vạn thọ và các phân đoạn tinh khiết có chứa flavonoid patuletin, quercetagetin và quercetin và các dẫn xuất của chúng, cũng như carotenoid lutein, được đưa tiếp xúc với các tế bào Jurkat được thử thách với 25 hoặc 50 μ M H 2 O 2.
Hydrogen peroxide gây ra stress oxy hóa trong tế bào, biểu hiện là tạo ra các gốc superoxide và peroxyl, giảm khả năng tồn tại, chu kỳ tế bào bị bắt và tăng cường quá trình chết rụng. Sự căng thẳng đã được giảm bớt nhờ các thành phần cúc vạn thọ thể hiện khả năng loại bỏ gốc rễ cao và tăng cường hoạt động của các enzym chống oxy hóa liên quan đến việc trung hòa các loại oxy phản ứng.
Phần flavonoid giàu quercetin và quercetagetin cho thấy hoạt tính bảo vệ tế bào cao nhất, trong khi patuletin ở liều cao có tác dụng gây độc tế bào liên quan đến khả năng chống ung thư của nó. T. patulacác hợp chất tăng cường sản xuất interleukin-10 (IL-10) chống viêm và chống oxy hóa trong tế bào Jurkat. Cả khả năng loại bỏ gốc rễ trực tiếp và kích thích các cơ chế bảo vệ tế bào có thể làm nền tảng cho các đặc tính chống viêm của hoa cúc vạn thọ.
Chiết xuất ethanol từ hoa Calendula officinalis L. thể hiện tác dụng chống viêm thông qua việc ức chế các cytokine gây viêm (IL-1β, IL-6, TNF-α và IFN-γ), và nó đã được đề xuất để ức chế COX-2 thông qua ức chế gen enzym và tổng hợp prostaglandin sau đó.
Alumina là gì?
Alumina là oxit của nhôm, công thức hóa học là Al2O3. Alumina tồn tại ở dạng chất rắn kết tinh màu trắng. Chúng ta hiếm khi tìm thấy Alumina tự nhiên ở dạng tự do vì nhôm quá phản ứng. Trong tự nhiên, nhôm sẽ có lớp oxit bảo phủ bề mặt nó, bảo vệ nó khỏi bị ăn mòn.
Alumina có khối lượng phân tử vào khoảng 102 g mol-1. Điểm nóng chảy và điểm sôicủa Alumina là trên 2000 độ C. Đặc tính của hợp chất này là nó không tan trong nước nhưng rất hút ẩm, không thể dẫn điện nhưng nó là chất dẫn nhiệt. Vì nhôm là một nguyên tố lưỡng tính nên nhôm oxit cũng là một oxit lưỡng tính.

Alumina thường xuất hiện ở dạng khoáng chất kết tinh. Nó rất hữu ích trong việc sản xuất kim loại nhôm bằng quy trình Hall. Trong quá trình này, Alumina được hòa tan trong criolit nóng chảy, và muối tạo thành được điện phân. Sau đó, chúng ta có thể thu được kim loại nhôm nguyên chất.
Hơn nữa, chúng ta có thể sử dụng hợp chất này như một chất mài mòn do độ cứng và sức mạnh của nó. Nó cũng hữu ích như một chất xúc tác để tăng cường tốc độ phản ứng hóa học. Ngoài ra, nó rất hữu ích như một chất hấp thụ nước để làm sạch khí và chất độn cho nhựa.
Các nhà sản xuất mỹ phẩm thường sử dụng Alumina trong các sản phẩm làm sạch, son môi, phấn má hồng và các sản phẩm khác. Theo tổ chức EWG (Hoa Kỳ), mặc dù Alumina có khả năng tăng cường hấp thụ qua da và tích lũy sinh học, nhưng nó vẫn được đánh giá là thành phần an toàn trong mỹ phẩm với liều lượng nhỏ.
Điều chế sản xuất Alumina
Alumina có nguồn gốc chủ yếu từ quặng bauxite thông qua quy trình của Bayer. Trong đó, vật liệu xút kết hợp với nhiệt và áp suất được sử dụng để hòa tan các khoáng chất chứa nhôm từ bauxite. Dư lượng bauxite sau đó được tách ra khỏi natri aluminate, cho phép alumina được kết tinh từ dung dịch còn lại. Alumina kết tinh sau đó được xử lý nhiệt trong lò quay để loại bỏ độ ẩm giới hạn, tạo ra sản phẩm alumina tinh khiết cuối cùng.

Cơ chế hoạt động
Alumina là một thành phần phụ đa năng chủ yếu hoạt động như một chất chứa sắc tố. Sắc tố ở đây có thể là thành phần chống nắng vật lý như titanium dioxide hoặc một thành phần tạo màu nào đó được pha trộn với các tiểu cầu alumina và được phủ bởi một số loại silicone như triethoxycarprylylsilane. Phương thức này giúp các sắc tố được phấn bố đồng đều và dễ tán hơn trên da. Alumina rất hữu ích cho các sản phẩm chống nắng vật lý cũng như các sản phẩm trang điểm.
Beta glucan là gì?
Beta glucan là chất xơ hoà tan đến từ thành tế bào của vi khuẩn, nấm, nấm men và một số thực vật. Từ lâu, Beta glucan đã được sử dụng trong Y học cổ truyền, đặc biệt là ở Nhật Bản và được nghiên cứu trong nhiều năm. Beta glucan cũng được sử dụng ở các loại thuốc cổ truyền ở Trung Quốc cũng như ở Châu Á. Tại Mỹ, nghiên cứu ban đầu tập trung vào tác dụng điều hoà miễn dịch của Beta glucan.
Là một chất xơ hoà tan, Beta glucan không được tiêu hoá nhưng đồng thời có thể làm chậm quá trình vận chuyển thức ăn trong ruột. Kết quả là carbohydrate được hấp thu chậm hơn, dẫn đến lượng đường trong máu ổn định hơn. Beta glucan còn giúp cơ thể ngăn hấp thu cholesterol từ thực phẩm, có thể kích thích hệ thống miễn dịch và làm giảm nguy cơ mắc các bệnh lý tim mạch.

Điều chế sản xuất Beta glucan
Việc tinh chế Beta glucan từ nấm men và các vi sinh vật khác đã được nghiên cứu rộng rãi và có nhiều phương pháp được biết đến. Hầu hết trong số này dựa vào tính không hòa tan của β-(1-3)-glucan trong kiềm hoặc trong dung môi hữu cơ.
Các phương pháp chính được biết đến là:
- Chiết ở nhiệt độ cao bằng sodium hydroxide đậm đặc, sau đó chiết ở nhiệt độ cao bằng acid và kết tủa bằng ethanol. Nhiều quy trình trong số này yêu cầu sự đồng nhất sơ bộ của các tế bào nấm men. Bên cạnh đó, nhiều quy trình yêu cầu lặp lại nhiều lần từng bước chiết xuất.
- Chiết xuất các chế phẩm thành tế bào nấm men từ quá trình tự phân hủy hoặc phân hủy enzyme của nấm men bằng phenol : nước đậm đặc (1:1).
- Chiết bằng các dung môi hữu cơ như isopropanol, ethanol, acetone hoặc methanol riêng lẻ hoặc với sự có mặt của chất kiềm.

Cơ chế hoạt động
Các công dụng của Beta glucan mang lại dựa trên nhiều cơ chế khác nhau.
Beta glucan được coi là chất kích hoạt mạnh mẽ khả năng miễn dịch tế bào, với đại thực bào là mục tiêu sinh học quan trọng nhất. Với các tác dụng đáng kể trên các nhánh khác nhau của hệ thống miễn dịch. Các thành phần của hệ miễn dịch bị ảnh hưởng bởi Beta glucan bao gồm đại thực bào, bạch cầu đơn nhân, tế bào đuôi gai và tế bào NK. Các thụ thể quan trọng nhất là Dectin-1 và CR3, các thụ thể bổ sung bao gồm Toll-2, lactosylceramide và các thụ thể scavenger.
Beta glucan trong da liễu ít được nghiên cứu hơn, trong hầu hết trường hợp, Beta glucan được sử dụng để chữa lành vết thương. Cơ chế có thể thông qua việc Beta glucan kích thích đại thực bào. Beta glucan còn được phát hiện ra là làm tăng phản ứng da do bradykinin gây ra, cho thấy sự kích hoạt nội mô thông qua việc tạo ra các chất vận mạch.
Giống như các loại chất xơ hoà tan khác, Beta glucan làm chậm quá trình di chuyển của thức ăn trong ruột. Điều này làm tăng thời gian tiêu hóa thức ăn, khiến bạn no lâu hơn. Beta glucan cũng làm chậm quá trình hấp thu đường vào máu, giúp ổn định lượng đường trong máu. Ngoài ra, Beta glucan còn làm giảm sự hấp thu cholesterol trong máu. Hàng loạt các thử nghiệm lâm sàng cũng cho thấy các hiệu quả khác nhau của Beta glucan như chống ung thư, chống đái tháo đường, và giảm cholesterol máu đặc biệt là các lipoprotein mật độ thấp (LDL - mỡ máu xấu).

Behentrimonium Chloride là gì?
Behentrimonium chloride là một chất rắn dạng sáp có nguồn gốc từ hạt của cây Brassica rapa olifera. Hoạt chất là chất rắn dạng sáp, thuộc họ cây cải, loại cây có hoa màu vàng đặc trưng. Thành phần này có cấu tạo là một muối amoni bậc bốn và một ankyl trimonium mạch thẳng.

Behentrimonium chloride chống được lực tĩnh điện vì thế được sử dụng ở nhiều sản phẩm chăm sóc tóc với mục đích là nhằm giảm tóc làm cho mái tóc của bạn thêm mượt mà. Trong thành phần này chứa nhiều tiểu phân tử kích thích micromet để dễ thấm sâu vào chân tóc. Nhờ vậy, thành phần này có thể giúp cho loại tóc bị hư tổn sau quá trình uốn, nhuộm nhanh chóng được phục hồi.
Điều chế sản xuất
Người ta sản xuất behentrimonium clorua theo quy trình lần lượt như sau: Bước đầu tiên là tạo ra dầu hạt cải, bước tiếp theo là lấy dầu hạt cải làm nóng rồi đưa vào máy ép hoặc máy ép trục vít. Người ta thêm dung môi vào bánh ép còn lại tiếp tục chiết xuất dầu. Thông qua quá trình hơi nước và nhiệt để người ta tách bỏ dung môi khỏi dầu để thu được lượng dầu tinh khiết. Bước tiếp theo là cho behenyl đimetylamin bậc bốn với metyl clorua trong 30% dipropylen glyco để tạo ra behentrimonium clorua. Đó là quy trình điều chế sản xuất ra behentrimonium clorua.
Cơ chế hoạt động
Lớp ngoài cùng của nang tóc được gọi là lớp biểu bì và được cấu tạo phần lớn bằng keratin. Đây là loại chất rất giàu các nhóm cysteine và có tính axit khá nhẹ, khi dùng tóc sẽ trở nên mượt mà không bị rối. Khi làm sạch tóc, nhóm cysteine khử những độc tố có trên tóc, sẽ tạo ra điện tích âm cho mái tóc.

Trong dầu xả các thành phần phải kể đến là amoni bậc bốn tích điện dương, hay Behentrimonium Chloride, polyme được gọi là Polyquaternium -XX (trong đó XX là một số tùy ý) nó gắn vào tóc thông qua tương tác tĩnh điện.
Trong quá trình thấm vào tóc, những hợp chất này sẽ tạo ra một số hiệu ứng. Khi quá trình này thực hiện, chuỗi hydrocarbon mạch dài của chúng hoạt động với mục đích bôi trơn bề mặt cho từng nang tóc. Kết quả sẽ giảm cảm giác thô ráp của từng nang tóc, mái tóc trở nên suôn mượt, khi chải tóc sẽ trở nên dễ dàng. Công dụng của lớp phủ bề mặt của các nhóm cation, giúp cho những sợi tóc được tách ra khỏi nhau bằng tĩnh điện, sẽ giúp tóc không bị vón lại. Hợp chất này hoạt động giống như chất chống tĩnh điện, giúp tóc giảm xoăn, chống làm tóc xơ và khô giúp tóc thêm mượt mà dễ chải.
Diethylamino Hydroxybenzoyl Hexyl Benzoate là chất chống nắng hóa học thế hệ mới, công thức hóa học là C24H31NO4.
Diethylamino Hydroxybenzoyl Hexyl Benzoate có thể hấp thụ tia UVA đồng thời cũng có khả năng quang hóa cao. Chúng ta đều biết, những hoạt chất chống tia UVB có rất nhiều nhưng chống tia UVA thì lại ít và bước sóng càng dài, năng lượng càng thấp, khả năng đâm xuyên càng cao và càng khó để ngăn chặn.
Trước đây, ZinC Oxide là thành phần chống UVA nổi tiếng nhưng về sau, với sự tiến bộ của công nghệ thì Diethylamino Hydroxybenzoyl Hexyl Benzoate ra đời, cho hiệu quả cao hơn ZinC Oxide rất nhiều lần.

Cụ thể, Diethylamino Hydroxybenzoyl Hexyl Benzoate có thể hấp thụ bước sóng nằm trong khoảng 330 – 360nm, nghĩa là bao gồm cả UVA2, và một phần hầu hết của UVA1. Khả năng hoạt động cao nhất của Diethylamino Hydroxybenzoyl Hexyl Benzoate là ở bước sóng 354nm.
Theo đánh giá, Diethylamino Hydroxybenzoyl Hexyl Benzoate có hiệu quả hấp thụ và loại bỏ tác hại rất cao nên chỉ cần một tỷ lệ nhỏ hoạt chất này là đã có thể phát huy tốt hiệu quả chống nắng. Do đó, người dùng không cần thoa lớp kem chống nắng quá dày, chỉ cần một lớp vừa phải là kem thẩm thấu nhanh không bì da, bết dính cũng như không để lại vệt trắng khi sử dụng gây mất thẩm mỹ.
Mặt khác, Diethylamino Hydroxybenzoyl Hexyl Benzoate là một hoạt chất chống nắng hóa học nên chỉ tan trong dầu, hoạt động đặc biệt ổn định với ánh sáng mặt trời nên có thể xem là một lựa chọn khá hoàn hảo hiện nay.
Một số chất chống nắng bạn có thể tham khảo để chọn cho mình sản phẩm phù hợp:
-
Các chất chống nắng chỉ lọc được tia UVA: Diethylamino hydroxybenzoyl hexyl benzoate, Ecamsule (Mexoryl SX), Avobenzone, Menthyl anthranilate, Bisdisulizole disodium, …
-
Các chất chống nắng chỉ lọc được tia UVB: Octinoxate, Ethylhexyl triazone, Homosalate, Cinoxate, Octisalate, Aminobenzoic acid (PABA), Cinoxate,…
-
Các chất chống lọc được cả tia UVA + UVB: Bemotrizinol, Octocrylene, Iscotrizinol, Bisoctrizole, Drometrizone trisiloxane, Benzophenone, Oxybenzone.
Cetrimonium Chloride là gì?
Cetrimonium Chloride, Cetrimonium Bromide và Steartrimonium Chloride là các muối amoni bậc bốn được dùng rất phổ biến trong các sản phẩm chăm sóc cá nhân. Cetrimonium Chloride có đặc tính như tan trong nước, là chất hoạt động bề mặt và có khả năng kháng khuẩn, chống viêm.

Cetrimonium Chloride tồn tại ở dạng chất lỏng màu vàng nhạt, mùi nồng, có thể tương thích với chất hoạt động bề mặt không ion, cation và các dung môi phân cực. Nhờ những đặc tính kể trên mà các nhà sản xuất chuộng sử dụng Cetrimonium Chloride trong các sản phẩm chăm sóc tóc để giúp người dùng giải quyết các vấn đề hư tổn của tóc do làm tóc và nhiệt độ quá cao.
Bên cạnh đó, Cetrimonium Chloride còn được sử dụng như là một loại chất hoạt động bề mặt hiệu quả, nó có khả năng cân bằng điện tích trên bề mặt tóc giúp tóc mượt mà hơn trong thời tiết lạnh, khô…
Cetostearyl Alcohol là gì?
Cetostearyl alcohol là một chất hóa học màu trắng, mùi nhẹ, tồn tại dưới dạng sáp, được làm từ Cetyl alcohol và Stearyl alcohol. Hai loại cồn này đều thuộc nhóm cồn béo còn được gọi là cồn mạch dài, có nguồn gốc từ thực vật như dầu dừa, dầu cọ. Cetostearyl alcohol cũng có thể được tổng hợp trong phòng thí nghiệm.

Cetostearyl alcohol chứa khoảng 65% đến 80% Stearyl alcohol và 20% đến 35% Cetyl alcohol.
Cồn béo thường có số nguyên tử cacbon chẵn với một nhóm cồn duy nhất (–OH) gắn vào cacbon cuối cùng. Sự kết hợp giữa Cetyl alcohol (có 16 nguyên tử Cacbon) và Stearyl alcohol (có 18 nguyên tử Cacbon) cho Cetearyl alcohol có 34 nguyên tử cacbon với công thức phân tử là C34H72O2.
Tên Cetostearyl alcohol cũng xuất hiện dưới các tên khác như: Cetearyl alcohol; (C16-C18) Alkyl alcohol; Alcohols, C1618; Cetyl/ Stearyl alcohol, 1-octadecanol, trộn với 1-hexadecanol.
Ngoài Cetostearyl alcohol, một số cồn béo khác cũng được sử dụng trong các sản phẩm mỹ phẩm như Cetyl, Lanolin, Oleyl và Stearyl.
Về mặt lý thuyết, Cetostearyl alcohol có thể được sử dụng trong bất kỳ loại mỹ phẩm nào dùng để thoa lên da hoặc tóc và thường được tìm thấy trong các loại kem dưỡng da, kem dưỡng ẩm, dầu dưỡng ẩm và dầu gội đầu. Khi được sử dụng trong các sản phẩm mỹ phẩm, Cetostearyl alcohol hoạt động như một chất nhũ hóa và cũng là chất ổn định, ngăn cản các thành phần trong sản phẩm bị tách ra, nhất là sau một thời gian dài không sử dụng.
Thành phần này không tan được trong nước và tan nhiều trong trong các dung môi hữu cơ như Ete, Chloroform, Benzen…
Điều chế sản xuất
Cetostearyl alcohol được sản xuất bởi nhiều phương pháp như ester hóa hoặc hydrogen hóa của các acid béo. Chất này cũng có thể sản xuất bằng xúc tác hydrogen hóa chất béo trung tính thu được từ dầu dừa hoặc từ mỡ động vật, sau đó được tinh chế bằng phương pháp cất hoặc kết tinh.
Cơ chế hoạt động
Cetostearyl alcohol tạo độ đặc và độ gel cho sản phẩm. Chất này phân tán các nguyên liệu có trong thành phẩm, tạo thành một khối đồng nhất và loại bỏ hiện tượng tồn đọng ở nhiều dạng khác nhau.
Trong mỹ phẩm, hóa chất này còn hoạt động như một chất làm mềm, tạo độ ẩm và chất làm giảm mùi của một số chất khác trong hỗn hợp. Cetyl alcohol với công thức C16H34O giúp các thành phần khác như Retinol và vitamin C thẩm thấu nhanh vào da. Đồng thời, chất này tạo một lớp bảo vệ giúp ngăn ngừa mất nước từ da, làm mềm, giữ ẩm và bảo vệ da, cải thiện độ nhờn, kiềm nhờn cho da.
Các loại cồn béo như Cetostearyl alcohol không có tác hại xấu đến làn da như các loại cồn khác do cấu trúc hóa học của chúng. Thành phần hóa học của cồn Cetostearyl gồm nhóm cồn (-OH) được gắn vào một chuỗi hydrocacbon (chất béo) rất dài. Tính năng này cho phép cồn béo giữ nước và mang lại cảm giác nhẹ nhàng cho da. Hóa chất làm cho da mịn màng và mềm mại hơn. Để làm được điều này, cồn béo nói chung và Cetostearyl alcohol đã hình thành một lớp dầu trên cùng của da để giữ độ ẩm sâu bên trong.
Sản phẩm liên quan











