TinosorBM
Phân loại:
Thành phần khác
Mô tả:
Tinosorb M là gì?
Cách đây vài năm, các sản phẩm chống nắng có chứa Tinosorb đã rất phổ biến tại Châu Âu, Nhật Bản hoặc Hàn Quốc. Các thành phần Tinosorb S, Tinosorb S Aqua và Tinosorb M thuộc nhóm Tinosorb đều là những chất chống nắng phổ rộng, có tác dụng hiệu quả với UVB, UVA1 và UVA2.
Tinosorb M hoặc gọi là Bisoctrizole có tên khoa học là Methylene bis-benzotriazolyl tetramethylbutylphenol với công thức hóa học C41H50N6O2, có thể tan trong nước khá tốt, tương tự với dầu. Nếu sản phẩm chống nắng không được nhà sản xuất ghi rõ chữ Tinosorb trên bao bì, bạn có thể tìm trong bảng thành phần tên khoa học Methylene Bis-Benzotriazolyl Tetramethylbutylphenol hoặc Bisoctrizole.
Tinosorb M là một thành phần chống nắng hóa học, gốc nước, lên da nhẹ nhàng và không gây bóng dầu như Tinosorb S (thành phần chống nắng gốc dầu). Có tính ổn định rất cao, đồng thời lại mang những đặc tính như thành phần chống nắng vật lý nhưng ưu việt hơn:
Tinosorb M lưu lại lớp màng trắng nhẹ, mỏng, sáng da không gây dày bí.
Chất này có phổ chống nắng rất cao, hình thành màng chắn tia UVA1, UVA2, UVB đồng thời phản xạ tia UV rất hiệu quả, ngăn chặn sự xâm nhập của tia UV lên làn da mỏng manh.
Tinosorb M là một bộ lọc tia cực tím tổng hợp ở dạng các hạt nano.
Tinosorb M có kết cấu tốt hơn các bộ lọc khoáng như Zinc oxide và nhẹ nhàng hơn các bộ lọc tổng hợp truyền thống như Oxybenzone.
Theo các nghiên cứu, Tinosorb M có thể được xem là lai giữa chống nắng hóa học và vật lý, bao gồm khả năng che chắn da khỏi tia UV, đồng thời lại hấp thụ và loại bỏ một phần năng lượng của tia UV, biến chúng thành những dạng năng lượng thấp hơn.
Với khả năng này, Tinosorb M sẽ bảo vệ các tế bào da, các cấu trúc collagen, elastin và DNA khỏi tác hại của các loại tia cực tím, ngăn chặn quá trình tăng sinh Melanin từ đó ngừa dấu hiệu lão hóa, nám da và những bệnh lý nguy hiểm như ung thư da.
Cơ chế hoạt động
Nhờ kích thước phân tử lớn, Tinosorb M khó hấp thu qua da nên cũng không gây kích ứng cho da nhạy cảm.
Về tác dụng, Tinosorb M hấp thụ bước sóng 290-410nm, nghĩa là toàn bộ UVB, UVA 2, UVA 1.
Về hiệu quả, từ bước sóng 290 - 370 mn, khả năng hấp thụ của Tinosorb M thấp hơn khá nhiều chất với những bức xạ dưới 370 nm.
Ngoài ra, các nghiên cứu cho thấy thành phần này không ảnh hưởng gì đến hệ thống nội tiết trong cơ thể. Đây là điểm mạnh với một chất chống nắng hóa học.
Dược động học:
Dược lực học:
Xem thêm
Tên gọi, danh pháp
Tên Tiếng Việt: Thạch tùng răng cưa.
Tên gọi khác: Cây chân sói.
Tên khoa học: Huperzia serrata , họ: Lycopodiaceae.
Đặc điểm tự nhiên
Thạch tùng răng cưa là một loại cây thân thảo lâu năm (15 - 40 cm) gần với dương xỉ, mọc ở vùng đất ngập nước và rừng ở hầu hết Trung Quốc và ở phía bắc Việt Nam, một khu vực từng là một tỉnh của Đế quốc Trung Hoa, dưới tên Giao Chỉ (từ năm 111 trước Công nguyên đến năm 939 sau Công nguyên).
Thân
Thạch tùng răng cưa có thân mọc thẳng hoặc mọc đối, 10 - 30 cm, đường kính 1,5 - 3,5 mm. ở giữa cùng với các lá rộng 1,5 - 4 cm, phân nhánh 2 - 4 lần, phần trên thường có củ.
Lá
Thạch tùng răng cưa có lá thưa, mọc vuông góc với thân, láng bóng, hình elip hẹp, thuôn rõ về phía gốc, thẳng, 1-3 cm × 1-8 mm, mỏng như da, cả hai mặt đều nhẵn, gân giữa nổi rõ,mép thẳng và không giòn, có răng không đều, đỉnh nhọn; răng nhọn ở đỉnh, thô hoặc hơi nhỏ.
Các lá mọc lệch gần gốc, lan dần về phía ngọn thân, xếp thành nhiều bậc xoắn ốc, không có khí khổng trên các mặt trục, các lá lớn nhất thuôn hẹp với đỉnh nhọn đột ngột.

Cây thạch tùng răng cưa
Phân bố, thu hái, chế biến
Thạch tùng răng cưa phân bố rộng rãi ở Nam Á, Ấn Độ và Bắc Mỹ. Thạch tùng răng cưa là một loại thảo mộc truyền thống và là dược liệu có nguy cơ tuyệt chủng của Trung Quốc, đã thu hút nhiều sự chú ý do sản xuất Huperzine A (HupA). Thạch tùng răng cưa sinh trưởng rất chậm, vòng đời dài nên năng suất thấp, hầu như không được nuôi trồng trong điều kiện tự nhiên hiện nay.
Ở Việt Nam, Thạch tùng răng cưa mới chỉ được phát hiện ở vùng núi cao trên 1.000 m tại Sa Pa (thuộc tỉnh Lào Cai) và Đà Lạt (thuộc tỉnh Lâm Đồng), nó thường sống dưới tán của các loại cây khác.
Bộ phận sử dụng
Bộ phận dùng của Thạch tùng răng cưa là phần thân cây trên mặt đất, có thể dùng tươi hoặc sấy khô để bảo quản lâu dài.
Glycol Distearate là gì?
Glycol Distearate là một diester, sản phẩm kết hợp giữa ethylen glycol và acid stearic. Hóa chất này có màu trắng, mùi tự nhiên không tan trong nước, phân tán trong nước và dầu, có chỉ số HLB là 5-6.
Trong công thức mỹ phẩm, Glycol Distearate có khả năng tạo bọt nên thường được dùng sản xuất dầu gội, xà phòng, nước rửa tay, sữa tắm… Glycol Distearate đã được kiểm định và chấp thuận bởi CIR vì khả năng thích ứng và nhạy cảm với da rất thấp.
Điều chế sản xuất Glycol Distearate
Glycol Distearate có thể được tìm thấy từ nguồn động vật hoặc các nguồn thực vật như dầu đậu nành, dầu colano. Hóa chất này cũng có thể được sản xuất tổng hợp từ quá trình diester giữa axit stearic acid béo. Glycol Distearate là diester của ethylene glycol và stearic acid.
Calcium Pantothenate là gì?
Calcium Pantothenate (còn được gọi với tên D-Calcium Pantothenate, Vitamin B5, API Pantothenate) là dạng muối canxi của vitamin B5, có tính ổn định cao.
Như chúng ta đều biết, vitamin B5 rất quan trọng đối với sức khỏe con người, tạo ra các tế bào máu, giúp chuyển đổi thức ăn thành năng lượng. Bên cạnh đó, vitamin B5 còn vô cùng hiệu quả trong việc mang lại sức khỏe tuyệt vời cho làn da. Các nhà sản xuất rất ưu ái khi đưa vitamin B5 vào trong các loại mỹ phẩm, dược liệu để mang lại hiệu quả tốt nhất.
Calcium Pantothenate tan được trong nước. Chúng ta có thể tìm thấy Calcium Pantothenate trong nguồn thực phẩm từ thực vật và động vật. Calcium Pantothenate tham gia điều chỉnh nhiều quá trình sinh lý, xây dựng sức khỏe tổng thể cho cơ thể.
Trong mỹ phẩm chăm sóc da hiện nay, chúng ta sẽ bắt gặp hai thành phần là Calcium Pantothenate và Panthenol (Pantothenol). Chúng đều là vitamin B5 nhưng lại khác nhau về công dụng.
Nếu Panthenol thích hợp cho người da mặt khô ráp, thô cứng, sần sùi kém láng mịn thì Calcium Pantothenate là chọn lựa hiệu quả đối với người có làn da bị mụn viêm nhiều; da tổn thương cho kem trộn/rượu rễ cây/thuốc bắc kém chất lượng; da nhạy cảm (yếu/mỏng/đỏ/kích ứng).
Điều chế sản xuất Calcium Pantothenate
Calcium Pantothenate là một chất tổng hợp được làm từ acid pantothenic.
Cơ chế hoạt động của Calcium Pantothenate
Hệ thống cơ thể người sẽ sử dụng Calcium Pantothenate (axit pantothenic, chất liệu thô) để tạo ra năng lượng và phá vỡ carbohydrate và chất béo. Con người và động vật cần Calcium Pantothenate (API Pantothenic, nguyên liệu thô) để thực hiện một số chức năng hệ thần kinh bình thường.
Adenine là gì?
Adenine là một nucleobase (một dẫn xuất purine). Nó là một trong bốn nucleobase trong axit nucleic của DNA được biểu thị bằng các chữ cái G – C – A – T. Ba chất khác là guanine, cytosine và thymine. Các dẫn xuất của nó có nhiều vai trò khác nhau trong sinh hóa bao gồm hô hấp tế bào, ở dạng cả adenosine triphosphate (ATP) giàu năng lượng và các đồng yếu tố nicotinamide adenine dinucleotide (NAD), flavin adenine dinucleotide (FAD) và Coenzyme A.
Adenine có công thức hóa học là C5H5N5 và cấu trúc là một vòng cacbon-nitơ kép. Nó là một purine, vì vậy nó được tạo thành từ một vòng năm cạnh và một vòng sáu cạnh, mỗi vòng chứa nitơ, được hợp nhất với nhau. Phân tử adenin có thể được phân biệt với các nhân purin khác bằng nhóm amin gắn với cacbon của chúng ở vị trí 6. Ngoài ra còn có một nhóm hydro gắn với nitơ ở vị trí 9.

Adenine có công thức hóa học là C5H5N5
Nó cũng có có chức năng tổng hợp protein và là thành phần hóa học của DNA và RNA. Hình dạng của adenine bổ sung cho thymine trong DNA hoặc uracil trong RNA.
Điều chế sản xuất
Sự chuyển hóa purine liên quan đến sự hình thành của adenine và guanine. Cả adenine và guanine đều có nguồn gốc từ nucleotide inosine monophosphate (IMP), lần lượt được tổng hợp từ một ribose phosphate có sẵn từ trước thông qua một con đường phức tạp sử dụng các nguyên tử từ axit amin glycine, glutamine và axit aspartic, cũng như coenzyme tetrahydrofolat.
Phương pháp sản xuất adenine ở quy mô công nghiệp được công nhận hiện nay là một dạng sửa đổi của phương pháp formamide. Phương pháp này làm nóng formamide trong điều kiện 120 độ C trong bình kín trong 5 giờ để tạo thành adenin. Phản ứng được tăng lên nhiều về số lượng bằng cách sử dụng phốtpho oxyclorua (photphoryl clorua) hoặc photpho pentachlorua làm chất xúc tác axit và điều kiện ánh sáng mặt trời hoặc tia cực tím.
Sau khi 5 giờ trôi qua và dung dịch formamide-phospho oxychloride-adenine nguội bớt, nước được đưa vào bình có chứa formamide và bây giờ là adenine đã tạo thành.
Cơ chế hoạt động
Adenine tạo thành adenosine, một nucleoside, khi gắn vào ribose, và deoxyadenosine khi gắn vào deoxyribose, và nó tạo thành adenosine triphosphate (ATP), thúc đẩy nhiều quá trình trao đổi chất tế bào bằng cách truyền năng lượng hóa học giữa các phản ứng.
Ascorbyl Glucoside là gì?
Ascorbyl Glucoside (vitamin C gốc đường) là một dẫn xuất của vitamin C. Ascorbyl Glucoside có độ pH từ 5-7. Khác với tác dụng trực tiếp khi lên da của các gốc C khác như LAA, EAA, MAP, SAP… Ascorbyl Glucoside sau khi lên da sẽ trải qua một quá trình hấp thụ và chuyển đổi thì mới mang lại những hiệu quả rõ rệt cho da.
Cụ thể, sau khi Ascorbyl Glucoside được hấp thụ vào da, một loại Enzyme được gọi là Alpha-Glucosidas sẽ phân hủy nó thành LAA (L – Ascorbic Acid). Quá trình này sẽ giúp da nhận được những hiệu quả của vitamin C như làm sáng da, chống oxy hóa, mờ thâm, làm mờ nếp nhăn... Và đồng thời hạn chế được tối đa các khả năng kích ứng so với khi bôi trực tiếp gốc L-AA lên da.
Người dùng sử dụng vitamin C gốc LAA thường hay gặp phải tình trạng khó hấp thụ, vitamin C bị oxy hóa ngay trên bề mặt da và khiến da bị vàng sạm. Những ai gặp trường hợp này khi sử dụng LAA thì có thể tham khảo sang gốc Ascorbyl Glucoside (Vitamin C gốc đường). Vì gốc này ổn định với ánh sáng hơn rất nhiều, cũng như độ hấp thụ và thẩm thấu tốt hơn hẳn.
Vì phải trải qua một giai đoạn chuyển hóa nên nhìn chung Ascorbyl Glucoside sẽ có hiệu quả chậm hơn so với vitamin C gốc LAA. Tuy nhiên, đây sẽ là một giải pháp an toàn, dài lâu, và cũng như đảm bảo sản phẩm đang dùng không bị oxy hóa giữa chừng. Thêm một điểm nhỏ nữa thì bảo quản Vitamin C gốc LAA khó cực kỳ, bạn phải để tránh ánh sáng trực tiếp, thường xuyên kiểm tra màu sản phẩm, nếu nó bị vàng ngà đi thì tinh chất đã bị oxy hóa và không thể sử dụng được nữa. Vitamin C gốc LAA tốt nhất nên được bảo quản ở tủ lạnh. Ngược lại, các sản phẩm chứa Ascorbyl Glucoside thì chỉ cần để ở nhiệt độ phòng và không cần lo ngại đến khả năng sản phẩm bị oxy hóa.
Vì sẽ chuyển hóa thành LAA sau khi lên da nên Ascorbyl vẫn duy trì những hiệu quả tốt của vitamin C đối với da. Nổi bật là các hiệu quả như chống oxy hóa, làm sáng da, giảm thâm, tăng độ đàn hồi, thúc đẩy hình thành và tái tạo Collagen trên da. Ưu điểm lớn của Ascorbyl Glucoside là thẩm thấu tốt, ít gây kích ứng trên da và hầu như sản phẩm không bị oxy hóa ngay cả khi bảo quản ở môi trường nhiệt độ phòng.
Điều chế sản xuất Ascorbyl Glucoside
Sản xuất công nghiệp của Ascorbyl Glucoside chủ yếu bao gồm việc chuẩn bị, tinh chế, kết tinh của ba quy trình chính.
Hiện nay, quá trình chuyển đổi sinh học là cách duy nhất để tổng hợp glucoside ascorbic acid, tức là sử dụng glucoside trên glucosyl donor được chuyển đến vị trí C 2 của vitamin C bằng cách sử dụng transglycosylation cụ thể của glycosyltransferase.
Trong phản ứng này, các độ dài khác nhau của các nhóm glucosyl có thể được gắn với vị trí C 2 của vitamin C để sản xuất một hỗn hợp AA-2Gn (n = 1,2,3,4,5-C có thể chuyển thành Ascorbyl Glucoside bằng cách bổ sung một glucoamylase để giảm mức độ trùng hợp.
Ngoài ra, các đồng phân AA-5G, AA-6G và các AA-2G khác có xu hướng hình thành trong phản ứng glycosyltransferase, và các nhà tài trợ vitamin C và glucose vẫn tồn tại sau phản ứng, do đó phản ứng glycosyl hóa hoàn thành, dung dịch phản ứng được tách ra và tinh chế, và cuối cùng là phương pháp tinh thể để có được độ tinh khiết cao ascorbyl glucoside sản phẩm.
Cơ chế hoạt động của Ascorbyl Glucoside
Ascorbyl Glucoside có cấu trúc bao gồm một nhóm của L-ascorbic Acid và Glucose. Khi thẩm thấu qua da, thành phần này sẽ được enzyme alphe-glucosidase phân chia thành L-ascosbic Acid và Glucose tách biệt.
Khi đó, thành phần này cũng sẽ sở hữu chức năng tương tự như L-ascorbic acid thông thường, có khả năng hoạt động như một coenzyme kích thích quá trình tổng hợp Collagen của da.
Disodium Edta là gì?
Ethylene diamine tetraacetic acid, viết tắt là EDTA, là một loại axit hữu cơ mạnh. NH2 và 4 gốc carboxyl COOH là hai nhóm amin được chứa trong cấu trúc của EDTA.
EDTA và các muối của nó thường ở dạng tinh thể hoặc dạng bột màu trắng, không bay hơi, có độ tan cao trong nước, có độ pH 10.5 – 11.5.
Có hai dạng EDTA chính thường được sử dụng trong các sản phẩm chăm sóc cá nhân gồm Tetrasodium EDTA và Disodium EDTA. Tetrasodium EDTA và Disodium EDTA khác nhau ở cấu trúc của các phân tử và độ pH. Nhưng hai loại này lại có công dụng tương tự nhau khi được ứng dụng trong mỹ phẩm và các sản phẩm chăm sóc cá nhân.
Disodium EDTA có khả năng cô lập các ion kim loại nặng, giúp sản phẩm không bị tác động bởi các phản ứng hóa học giữa kim loại và các hợp chất khác, tạo sự ổn định cho sản phẩm.
Ngoài ra, chất này có trong nhiều sản phẩm chăm sóc da và tóc như một chất bảo quản, giúp ngăn ngừa sự phát triển của vi khuẩn, nấm men và nấm mốc trong sản phẩm chăm sóc da. Tuy chất bảo quản không tốt khi dùng nhưng chúng giúp kéo dài thời hạn sử dụng sản phẩm. So với một số chất bảo quản tự nhiên, chất bảo quản tổng hợp cũng ít gây kích ứng da hơn và ít có khả năng tương tác với các thành phần khác trong công thức.
Ngoài công dụng chính là chất bảo quản, Disodium EDTA cũng được sử dụng để cải thiện khả năng tạo bọt của sản phẩm. Do đó EDTA thường có mặt trong xà phòng và chất tẩy rửa.
Điều chế sản xuất
EDTA lần đầu tiên được tổng hợp vào năm 1935 bởi Ferdinand Münz từ sự kết hợp của Ethylenediamine và Acid chloroacetic. Ngày nay, EDTA chủ yếu được tổng hợp từ Ethylenediamine, Formaldehyd và Natri cyanide.
Cơ chế hoạt động
Một trong những chức năng của Disodium EDTA là đóng vai trò như một tác nhân tạo phức. Disodium EDTA liên kết với các ion kim loại nặng và các nguyên tố vi lượng có trong nước cứng (loại nước có chứa hàm lượng các khoáng chất hòa tan dưới dạng các ion), từ đó làm cho chúng không còn hoạt động để ngăn chặn tác động bất lợi của chúng với sự ổn định của sản phẩm. Cụ thể, thành phần này ngăn không cho các kim loại này đọng trên da, tóc và da đầu. Sau khi các ion kim loại liên kết với EDTA, các ion kim loại vẫn ở trong dung dịch nhưng tính chất phản ứng giảm dần.
Các ion kim loại liên kết trong mỹ phẩm có thể đến từ nhiều nguồn khác nhau, đặc biệt từ các thành phần có nguồn gốc tự nhiên có thể có tạp chất kim loại. Ngoài ra, hệ thống nước hoặc các dụng cụ kim loại có thể chứa tạp chất. Nếu không được khử hoạt tính, các ion kim loại này có thể làm hỏng các sản phẩm mỹ phẩm bằng cách làm giảm độ trong, làm mất tính toàn vẹn của nước hoa và gây ra mùi ôi.
Mặc dù nước cứng không gây hại cho sức khỏe nhưng có thể làm ảnh hưởng đến tóc và da. Nước cứng làm tăng nguy cơ tích tụ kim loại trên tóc, khiến tóc nhuộm nhanh bị mất màu và làm tăng nguy cơ gãy rụng. Đồng thời nước cứng còn khiến việc rửa sạch da với xà phòng trở nên khó khăn hơn, dẫn đến da sẽ dễ bị khô và kích ứng. Disodium EDTA giúp chống lại tác động gây hại của nước cứng lên da. Nhờ đó, chất này đã được chọn để trở thành một thành phần đặc biệt trong các chất tẩy rửa trên da.
Việc Disodium EDTA hoạt động bằng cách liên kết với các ion kim loại trong dung dịch giúp ngăn các công thức mỹ phẩm không bị biến chất. Disodium EDTA bảo vệ tính toàn vẹn của các sản phẩm chăm sóc da, không làm thay đổi độ pH, mùi hoặc kết cấu. Ngoài ra, khi liên kết với canxi, sắt hoặc magiê, Disodium EDTA giúp tăng cường khả năng tạo bọt và làm sạch nên được sử dụng phổ biến trong các công thức chăm sóc da như một chất đồng bảo quản.
Cinnamaldehyde là gì?
Cinnamaldehyde còn được gọi là Aldehyde cinnamic; 3-phenyl-2-propan; Anđehit cinnamyl; Phenylalacrolein; quế chi và trans-cinnamaldehyde. Đây là thành phần có trong vỏ của cây quế (Cinnamomum zeylanicum), xuất xứ từ Sri Lanka và Ấn Độ và được trồng ở Brazil, Jamaica và Mauritius. Cinnamaldehyde cũng được tìm thấy trong các thành viên khác của loài Cinnamomum bao gồm cả cây cassia và long não.
Có công thức hóa học là C6H5CH = CHCHO, Cinnamaldehyde là một hợp chất hữu cơ xuất hiện tự nhiên chủ yếu là đồng phân trans (E), mang lại hương vị và mùi cho quế.
Đây là một Phenylpropanoid được tổng hợp tự nhiên bằng con đường sinh tổng hợp Shikimat, tồn tại dưới dạng chất lỏng nhớt, màu vàng nhạt. Tinh dầu của vỏ quế chứa khoảng 90% là Cinnamaldehyde.
Công thức phân tử của Cinnamaldehyde được xác định vào năm 1834 bởi các nhà hóa học người Pháp Jean Baptiste André Dumas (1800–1884) và Eugène Melchior Péligot (1811–1890) và mặc dù công thức cấu trúc của nó chỉ được giải mã vào năm 1866 bởi nhà hóa học người Đức Emil Erlenmeyer (1825– Năm 1909).
Điều chế sản xuất
Có nhiều cách để điều chế Cinnamaldehyde. Thành phần này được điều chế thương mại bằng cách xử lý vỏ cây Cinnamomum zeylanicum với hơi nước. Anđehit hòa tan trong hơi nước, sau đó Cinnamaldehyde được chiết xuất khi hơi nước nguội đi và ngưng tụ lại để tạo thành nước lạnh, trong đó hợp chất ít hòa tan hơn nhiều.
Cinnamaldehyde cũng có thể được tổng hợp bằng cách cho phản ứng giữa Benzaldehyde (C6H5CHO) với Acetaldehyde (CH3CHO). Hai hợp chất ngưng tụ sau khi loại bỏ nước để tạo thành Cinnamaldhyde.
Năm 1834, Cinnamaldehyde được phân lập từ tinh dầu quế bởi Jean-Baptiste Dumas và Eugène-Melchior Péligot và được nhà hóa học người Ý Luigi Chiozza tổng hợp trong phòng thí nghiệm vào năm 1854.
Tinh dầu quế được chiết xuất từ vỏ cây quế với thành phần chính là Cinnamaldehyde. Có hai cách để chiết xuất được tinh dầu quế từ vỏ quế: Đó là công nghệ chưng cất hơi nước và chiết xuất qua dung môi. Nhưng để đạt thành phần Cinnamaldehyde lên đến 90% thì phải sử dụng công nghệ chưng cất hơi nước, còn với công nghệ chiết xuất qua dung môi chỉ đạt được 62 % đến 73 % tỉ lệ Cinnamaldehyde.
Cơ chế hoạt động
Nhiều dẫn xuất của Cinnamaldehyde có ích về mặt thương mại. Rượu Dihydrocinnamyl, xuất hiện tự nhiên nhưng được sản xuất bằng cách hydro hóa gấp đôi Cinnamaldehyd, được sử dụng để tạo ra mùi thơm của lục bình và hoa cà. Rượu Cinnamyl cũng tương tự và có mùi của hoa cà, có thể được sản xuất bắt đầu từ Cinnamaldehyd. Dihydrocinnamaldehyd được tạo ra bởi quá trình hydro hóa chọn lọc của tiểu đơn vị kiềm.
Argania Spinosa là gì?
Argania Spinosa (hay Argan Oil, dầu Argan) là loại dầu thực vật được chiết xuất từ nhân hạt của cây Argan (tên khoa học là Argania spinosa spinosa L). Argania Spinosa có đặc tính màu vàng trong, thoang thoảng mùi thơm nhẹ, giàu chất dinh dưỡng nên được ưa chuộng sử dụng trong ẩm thực, trị thương, giảm đau, dưỡng da và tóc.
Trong dầu Argan chứa vitamin E (loại tocopherols), chất chống oxy hóa và các axit béo thiết yếu cùng nhiều dưỡng chất khác. Cụ thể như sau:
-
Các phenol tự nhiên chính trong dầu Argan: Axit caffeic, oleuropein, axit vanillic, tyrosol, catechol, resorcinol, epicatechin và catechin.
-
Các axit béo thiết yếu gồm có: Axit Linolenic (<0,5%), axit Stearic (6,0%), axit Palmitic (12,0%), axit Linoleic (36,8%), axit Oleic (42,8%). Những axit béo có vai trò quan trọng trong việc cung cấp dưỡng chất giúp chăm sóc, cải thiện, duy trì độ ẩm, giữ cho làn da đàn hồi và săn chắc.
-
Vitamin E: Hàm lượng vitamin E trong dầu Argan nhiều hơn trong dầu Olive gấp 2 lần. Loại vitamin này có tác dụng ngăn ngừa lão hóa da.
Điều chế sản xuất
Để chiết xuất được một lít dầu Argan, người ta sẽ cần đến 100 kg quả Argan. Đáng nói là cây Argan chỉ có ở Ma-rốc và chúng chỉ ra quả khi được 30-40 năm tuổi nên giá thành của Argania Spinosa tương đối cao.
Thời xưa, việc chiết xuất dầu Argan tiến hành bằng phương pháp thủ công. Ngày nay, người ta chiết xuất bằng phương pháp ép lạnh, công nghiệp hóa nhưng vẫn có một số giai đoạn như tách hạt phải làm thủ công.
Enzymes là gì?
Enzyme (hay còn gọi là men) là tên gọi của chất xúc tác sinh học có protein là thành phần cơ bản, được tạo thành từ các tế bào sinh vật. Enzyme tồn tại trong cơ thể con người, động vật và cả thực vật, hay bất cứ nơi nào tồn tại sự sống thì đều tồn tại enzyme.
Trong cơ thể, enzyme có tác dụng làm tăng tốc độ phản ứng hóa học, liên kết và biến đổi cấu trúc của các phân tử nhằm phục vụ cho nhiều hoạt động khác nhau như hô hấp, tiêu hóa, chức năng cơ và thần kinh. Cụ thể là:
- Với hệ tiêu hóa, enzym giúp cơ thể phá vỡ các phân tử phức tạp thành các phân tử đơn giản hơn như glucose, để sử dụng làm năng lượng.
- Enzyme trợ giúp quá trình sao chép DNA mỗi lần tế bào phân chia bằng cách tháo cuộn DNA và sao chép thông tin.
- Trong cơ thể, gan có chức năng phân hủy các chất độc với sự hỗ trợ của nhiều loại enzym khác nhau.
Trong những điều kiện nhất định thì enzym mới hoạt động hiệu quả, tốt nhất là vào khoảng 37°C. Dưới mức nhiệt độ này, tuy enzym vẫn hoạt động nhưng chúng hoạt động chậm hơn rất nhiều.
Cũng giống vậy, tùy thuộc vị trí của các enzym trong cơ thể, chúng chỉ có thể hoạt động trong một khoảng pH nhất định. Chẳng hạn, ở độ pH 7,5 thì các enzym trong ruột sẽ hoạt động được tốt nhất, trong khi đó ở độ pH 2, các enzym trong dạ dày hoạt động tốt nhất vì dạ dày có tính axit hơn nhiều.
Các enzyme sẽ thay đổi hình dạng gây khó khăn trong việc liên kết với cơ chất nếu nhiệt độ quá cao; môi trường quá axit hoặc quá kiềm.
Cơ thể chúng ta chứa hàng ngàn loại enzyme, điển hình là một số enzym dưới đây:
-
Lipase có vai trò giúp tiêu hóa chất béo tại ruột;
-
Amylase giúp chuyển hóa tinh bột thành đường;
-
Maltase giúp chuyển hóa đường maltose thành glucose. Maltose được tìm thấy trong các loại thực phẩm như khoai tây, mì ống và bia;
-
Trypsin giúp chuyển hóa protein thành các axit amin. Trypsin được tiết ở trong ruột non;
-
Lactase là enzym cũng được tìm thấy ở ruột non, giúp chuyển hóa lactose thành glucose và galactose;
-
Acetylcholinesterase giúp phân hủy chất dẫn truyền thần kinh acetylcholine trong dây thần kinh và cơ;
-
Helicase là loại enzyme tháo xoắn DNA;
-
DNA polymerase giúp tổng hợp DNA từ deoxyribonucleotide.
Có thể nói, nhờ có enzyme mà cơ thể chúng ta chuyển hóa tối đa dinh dưỡng thu được từ thức ăn nạp vào hàng ngày. Chúng ta sẽ hạn chế được tình trạng chậm tiêu sau khi ăn, nuôi dưỡng cơ thể hiệu quả hơn.
Điều chế sản xuất Enzymes
Enzyme tiêu hóa và enzyme chuyển hóa là ai loại enzyme chính được cơ thể người có thể tạo ra; trong đó các loại enzyme tiêu hóa được tiết ra trong tuyến nước bọt, dạ dày, tuyến tụy và ruột non giúp cơ thể tiêu hóa thực phẩm.
Trong khi đó, các loại enzyme chuyển hóa lại được sản sinh trong các tế bào, giúp cơ thể tổng hợp năng lượng và sử dụng năng lượng - yếu tố giúp con người có khả năng hít thở, suy nghĩ, di chuyển…
Cơ chế hoạt động của Enzymes
Enzym đóng vai trò quan trọng trong việc bảo vệ sức khỏe chúng ta bởi sự có mặt của chúng vô cùng cần thiết cho việc duy trì sự sống hàng ngày.
Dù đã có nhiều nghiên cứu được các nhà khoa học tiến hành song cho đến nay vẫn còn nhiều điều về enzym chưa thể giải đáp cũng như chưa giải thích được enzyme trong các tế bào được hình hình theo cơ chế nào. Chỉ biết rằng, rất nhiều enzyme được bản thân sinh vật tự sản sinh ra để đáp ứng nhu cầu của cơ thể mà thôi.
Số lượng enzym trong cơ thể chúng ta phải tính đến hàng ngàn, cụ thể là có hơn 5.000 loại enzyme mang đến 25.000 tác dụng khác nhau. Mọi hoạt động trong cơ thể chúng ta, từ hấp thụ đến tiêu hóa, hay như các cử động chân tay, suy nghĩ cũng đều được các enzym điều khiển.
Để dễ hình dung về cơ chế hoạt động của Enzyme trong cơ thể, chúng ta có thể theo dõi qua công thức sau:
E + S → ES → P + E
Trong đó:
- E là Enzyme -Chất xúc tác;
- S là cơ chất (Substrate) – Các hoạt chất chịu tác động của Enzyme;
- ES là phức hợp Enzyme - Cơ chất;
- P là sản phẩm (Product).
Như vậy, công thức cho chúng ta thấy cơ chế hoạt động (xúc tác) của enzyme có 3 giai đoạn:
-
Giai đoạn thứ nhất: Enzyme kết hợp với cơ chất bằng liên kết yếu tạo thành phức hợp Enzyme - Cơ chất (ES) không bền nhờ hình thành nhiều liên kết đặc biệt là liên kết hydrogen. Sự liên kết này làm thay đổi cấu hình không gian của cơ chất làm thay đổi động năng cũng như thế năng, kết quả là làm cho phân tử cơ chất trở nên linh hoạt hơn, nhờ đó tham gia phản ứng dễ dàng.
-
Giai đoạn thứ hai: Xảy ra sự biến đổi cơ chất dẫn tới sự kéo căng và phá vỡ các liên kết đồng hóa trị tham gia phản ứng.
-
Giai đoạn thứ ba: Enzyme xúc tác lên cơ chất tạo thành sản phẩm, còn enzyme được giải phóng ra dưới dạng tự do.
Emollient là gì?
Emollient là thành phần quen thuộc trong nhiều sản phẩm chăm sóc da khác nhau với vai trò là một chất làm mềm da.
Trong tự nhiên, bơ hạt mỡ hoặc dầu dừa chứa nhiều Emollient. Với Emollient có nguồn gốc tổng hợp, chúng ta có thể tìm thấy chúng trong dầu khoáng. Dù là tự nhiên hay tổng hợp, emollient đều hoạt động theo cách lấp đầy những khoảng trống do da bị khô và bong tróc gây ra. Nói cách khác, Emollient là chất làm mềm có thể giúp cho da mịn màng.
Emollient có thể hoạt động tốt với nhiều thành phần chăm sóc da khác, như kết hợp với các chất giữ ẩm khác có đặc tính duy trì độ ẩm trong kem dưỡng ẩm hoặc được kết hợp với hoạt chất khác như chất chiết xuất từ thực vật chống viêm.
Cơ chế hoạt động của Emollient
Emollient hoạt động dựa trên cơ chế lấp đầy những vết nứt trên bề mặt tế bào, vừa bao phủ vừa xen kẽ tế bào sừng, từ đó giúp làn da mịn màng hơn. Nhiều chất Emollient còn có công dụng sửa chữa và tái tạo làn da.
Ethylhexyl Palmitate là gì?
Ethylhexyl palmitate còn có tên gọi khác là Octyl palmitate, có công thức hóa học là C24H48O2. Đây là một este của rượu 2-ethylhexyl và Acid palmitic. Rượu 2-ethylhexyl được tìm thấy trong nước hoa có nguồn gốc tự nhiên và cũng có thể được sản xuất tổng hợp. Axit palmitic là acid béo bão hòa phổ biến nhất được tìm thấy trong động vật, thực vật và vi sinh vật và là thành phần chính của dầu cọ.
Ethylhexyl palmitate là một chất lỏng trong suốt, không màu ở nhiệt độ phòng có mùi hơi béo, không hòa tan trong nước nhưng có thể trộn lẫn trong dầu.
Do có cảm giác da trơn khô giống như một số Silicon, Ethylhexyl palmitate là một chất thay thế cho Silicon trong một số công thức nhất định.
Chất này cũng là một este có thể thay thế cho dầu khoáng (Mineral oil) và thường được kết hợp với các chất làm mềm khác để tạo ra kết cấu mướt mịn hơn cho sản phẩm.
Điều chế sản xuất
Acid palmitic và 2-etylhexanol được phản ứng với sự có mặt của chất xúc tác acid để tạo ra este Ethylhexyl palmitate.
Cơ chế hoạt động
Ethylhexyl palmitate được dùng phổ biến trong các sản phẩm mỹ phẩm như một chất làm mềm, chất tăng cường kết cấu và dung môi với lượng từ 2-50%, tùy thuộc vào loại công thức và tính thẩm mỹ của sản phẩm. Với da khô, chất làm mềm này cải thiện vẻ ngoài của da bằng cách làm giảm tình trạng mất độ ẩm từ các lớp trên của da, làm cho da mịn màng. Như một dung môi, Ethylhexyl palmitate hòa tan các thành phần khác, giúp chúng dễ dàng thẩm thấu vào da hơn. Ngoài ra, Ethylhexyl palmitate còn làm các thành phần hoạt tính chống nắng như Avobenzone và Ethylhexyl triazone phân tán đồng đều trong công thức.
Ester là gì?
Một ester là một hợp chất hữu cơ kết quả từ phản ứng giữa oxoacid và hợp chất hydroxyl (như rượu và phenol). Nó tương tự như một axit cacboxylic có nguyên tử hydro thuộc nhóm -COOH được thay thế bằng nhóm alkyl hoặc aryl.
Ester là các phân tử phân cực, so với các axit cacboxylic có trọng lượng tương tự thì điểm sôi của ester thấp hơn vì giữa chúng không thể hình thành liên kết hydro. Thay vào đó, chúng có thể hình thành liên kết hydro giữa các nguyên tử oxy và nguyên tử hydro của các phân tử nước. Do đó, ester ít tan trong nước.
Khác với axit cacboxylic tương ứng thường có mùi khó chịu, ester có mùi trái cây. Những ester này là lý do cho mùi của nhiều loại trái cây (chẳng hạn dứa có mùi từ ethyl ethanoate) nên ngành công nghiệp thực phẩm từ lâu đã sử dụng ester để tạo mùi.
Cần biết là, ester chúng ta sử dụng trong một sản phẩm cụ thể để có mùi trái cây mong muốn không phải là hợp chất có trong nguồn tự nhiên. Tuy nhiên, ester có thể tạo ra hương vị và mùi tương tự. Hơn nữa, mặc dù hợp chất không giống như trong trái cây tự nhiên, nhưng không nguy hiểm khi ăn các sản phẩm thực phẩm này vì cấu trúc của ester gần giống với hợp chất tự nhiên.
Có trọng lượng phân tử thấp và có mùi thơm, este thường được sử dụng làm nước hoa, các loại tinh dầu và pheromone. Este còn là dung môi tốt cho các chất dẻo, chất hóa dẻo, nhựa cây và sơn mài. Đây cũng đồng thời là một trong chất bôi trơn tổng hợp lớn nhất trên thị trường.
Điều chế sản xuất Ester
Este được điều chế theo nhiều phương pháp phân theo từng loại este: Este của ancol, este của phenol, este không no.
Este của ancol
Phương pháp thường dùng để điều chế este của ancol là tiến hành phản ứng este hóa, đun hồi lưu ancol và axit hữu cơ, có H2SO4 đặc làm xúc tác.
Phản ứng este hóa là phản ứng thuận nghịch. Để tăng hiệu suất phản ứng thuận:
-
Tăng nồng độ chất tham gia;
-
Giảm nồng độ sản phẩm bằng cách: Đun nóng để este bay hơi hoặc dùng H2SO4 đặc để hút nước. H2SO4 đặc vừa là xúc tác, vừa làm tăng hiệu suất phản ứng.
Este của phenol
Các este chứa gốc phenyl không điều chế được bằng phản ứng của axit cacboxylic với phenol mà phải dùng anhidrit axit hoặc clorua axit tác dụng với phenol.
Điều chế một số este không no
RCOOH + HC=CH → RCOOCH=CH2
Cơ chế hoạt động của Ester
Este có trọng lượng phân tử thấp, cấu tạo không phức tạp lắm và rất dễ chế tạo bằng phương pháp tổng hợp. Hợp chất này dễ bay hơi, chúng liên tục phát tán vào không khí làm cho mũi của chúng ta nhận biết được mùi thơm của hoa quả.
Sản phẩm liên quan