Parfum
Phân loại:
Thành phần khác
Mô tả:
Parfum là gì?
Rất nhiều người thích sử dụng mỹ phẩm (chăm sóc da, tóc, cơ thể) có mùi thơm nên các công ty mỹ phẩm thường đưa mùi thơm vào sản phẩm để thu hút khách hàng.
Parfum (hay Fragrance) là thuật ngữ chung được sử dụng để nói đến các công thức tạo mùi bí mật của sản phẩm. Trong ngành mỹ phẩm, có hai loại hương thơm bạn cần phân biệt, đó là hương thơm tự nhiên (Fragrance thiên nhiên) và hương thơm được tạo thành từ rất nhiều hóa chất khác nhau (parfum, fragrance). Mục đích chính của việc đưa hương thơm vào sản phẩm là nhằm che đi mùi khó chịu của sản phẩm chăm sóc da được đóng gói quá lâu trước khi sử dụng, nhất là những sản phẩm có các thành phần tự nhiên.

Hương thơm tự nhiên có nguồn gốc từ các thành phần lành tính trong tự nhiên, chiết xuất từ các loại hoa (như hoa hồng, hoa oải hương, hoa lài, gỗ sồi, cỏ, gỗ đàn hương,...) hay các loại tinh dầu thiên nhiên, vừa tạo mùi hương dễ chịu cho mỹ phẩm vừa có thể giúp điều trị một số bệnh lý hiệu quả nhưng quá trình chiết xuất vật lý lại khá tốn kém. Đó chính là lý do khiến parfum được các nhà sản xuất mỹ phẩm nói chung, nước hoa nói riêng ưa chuộng dùng trong ngành công nghiệp mỹ phẩm để thay thế vô số loại mùi hương tự nhiên.
Nếu để ý, bạn sẽ thấy trong phần lớn sản phẩm như nước hoa, lăn khử mùi, các sản phẩm chăm sóc cá nhân, kem chống nắng, sản phẩm tiêu dùng như chất tẩy rửa, chất làm mềm cũng như các sản phẩm làm sạch da… đều có thành phần parfum. Đây là một hỗn hợp chất có cấu trúc khá phức tạp, tạo ra bởi hàng ngàn hóa chất không an toàn khác nhau.
Người tiêu dùng thường không thấy parfum xuất hiện nhiều trên nhãn sản phẩm (chỉ ghi chung chung là chất làm thơm hay hương liệu tạo mùi), vì những hợp chất tạo mùi thơm này nằm trong công thức riêng của mỗi nhà sản xuất.
Điều chế sản xuất
Trong khi hương thơm tự nhiên được chiết xuất từ nguyên liệu lấy từ một số loài hoa hay tinh dầu thiên nhiên, an toàn đối với người dùng thì parfum có thể là một thành phần chứa khá nhiều chất hóa học (theo nghiên cứu thành phần này điều chế tạo khoảng 3.000 loại hóa chất khác nhau).
Vì thế, nếu sử dụng sản phẩm có chứa parfum thì bạn nên cân nhắc trước khi dùng bởi mức độ an toàn của nó là một vấn đề rất đáng quan tâm.

Cơ chế hoạt động
Parfum tạo ra mùi thơm cho sản phẩm, khi dùng giúp che lấp đi mùi cơ thể, kích thích khứu giác người sử dụng lẫn những người xung quanh. Có thể nói, parfum chính là bước đột phá trong ngành công nghiệp mỹ phẩm để mang lại vô số hương thơm, khiến việc chăm sóc da và chăm sóc cá nhân cũng trở nên thú vị hơn rất nhiều.
Purfum được sử dụng nhiều nhất trong nước hoa. Bên cạnh đó, thành phần này còn góp mặt trong công thức các sản phẩm chăm sóc cá nhân, tã em bé, nến, khăn giấy, các sản phẩm tẩy rửa, hay thậm chí là trong đồ chơi của trẻ em.
Dược động học:
Dược lực học:
Xem thêm
Sucrose là gì?
Sucrose còn được gọi là saccharose, là sản phẩm được tách ra từ cây mía và củ cải. Quy trình tiếp theo sẽ tiến hành làm tinh khiết và kết tinh, có vai trò cung cấp năng lượng cho cơ thể, có nhiều trong mía. Ở một số loại thực vật tự nhiên khác như thốt nốt, mật ong, trong một số loại trái cây người ta cũng tìm thấy sucrose. Nguồn gốc hình thành sucrose từ trong thực vật chứ không phải từ các sinh vật khác.
Sucrose là một disaccarit được tạo thành từ một là glucose và fructose. Cả hai loại đường liên kết với nhau bởi liên kết 1,2 glucoside. Sucrose còn có nhiều tên gọi khác nhau: Sucroza, saccarôzơ, đường kính, đường thốt nốt, đường mía, đường ăn, đường phèn, đường cát, sucrose pure,…
Công thức hóa học của Sucrose là C12H22O11.
Cấu tạo phân tử

Trong phân tử sucrose gốc – glucose và gốc – fructose liên kết với nhau qua nguyên tử O giữa C1 của glucose và C2 của fructose (C1 – O – C2).
Không còn nhóm OH hemiaxetal không có khả năng mở vòng.
Điều chế sản xuất
Vì sucrose có đột ngọt cao nên dùng làm chất tạo ngọt thực phẩm phổ biến nhất các tổ hợp của các thành phần chức năng. Có nơi người ta đã thay thế nó bằng các chất tạo ngọt khác như các si-rô fructose như ở Mỹ.
Loại đường được đánh giá là quan trọng nhất chính là sucrose, trong thực vật và có thể tìm thấy trong nhựa libe. Loại đường này được tách ra từ mía đường hay củ cải đường quy trình sau đó là làm tinh khiết và kết tinh. Ngoài ra việc sản xuất sucrose ở quy mô thương mại khác còn có lúa mì ngọt, Acer saccharum và thốt nốt (Borassus spp.).
Trong chế biến thực phẩm, sucrose do nó vừa là chất tạo ngọt vừa là chất dinh dưỡng. Sucrose là thành phần quan trọng trong nhiều loại thực phẩm như bánh bích quy, kẹo ngọt, kem và nước trái cây, hỗ trợ trong bảo quản thực phẩm.
Cơ chế hoạt động
Sacrosidase là một [beta]-fructofuranoside fructohydrolase thủy phân sucrose. Không giống như sucename-isomaltase ở ruột người, sucrose không có hoạt tính với oligosacarit chứa 1,6 liên kết glucosyl.
Sucrose là 1 disaccharide nên nó phải được chia nhỏ trước khi cơ thể tiêu hóa. Nhờ enzym trong miệng phân hủy 1 phần đường sucrose thành glucose và fructose. Việc tiêu hóa đường chủ yếu được diễn ra ở ruột non. Khi Enzyme sucrase được tiết ra bởi lớp niêm mạc ruột non sẽ giúp phân tách sucrose thành glucose, fructose và hấp thụ vào máu.
Gellan Gum là gì?
Gellan gum, chỉ số quốc tế là E418, là một chất phụ gia thực phẩm được sử dụng để thay thế cho Gelatin và thạch Agar, hiện được tìm thấy trong nhiều loại thực phẩm chế biến bao gồm mứt, kẹo, thịt và sữa thực vật.

Chất phụ gia thực phẩm này thường được sử dụng để kết dính, ổn định hoặc tạo kết cấu cho thực phẩm đã qua chế biến, tương tự như các chất tạo gel khác như Guar gum, Carrageenan, thạch Agar và Xanthan gum.
Gellan gum là một Polysaccharide anion hòa tan trong nước được tạo ra bởi vi khuẩn Sphingomonas elodea. Vi khuẩn sản sinh Gellan được phát hiện và phân lập vào năm 1978 từ mô cây hoa loa kèn trong ao nước tự nhiên ở Pennsylvania.
Gellan gum có thể chịu được nhiệt 120 độ C, được xác định là một chất tạo gel đặc biệt hữu ích trong việc nuôi cấy vi sinh vật ưa nhiệt. Chỉ cần khoảng một nửa lượng Gellan gum dưới dạng thạch có thể đạt được độ bền gel tương đương, mặc dù kết cấu và chất lượng chính xác phụ thuộc vào nồng độ của các điện tích dương hóa trị hai. Gellan gum cũng được sử dụng làm chất tạo gel trong nuôi cấy tế bào thực vật trên đĩa Petri, vì nó tạo ra một chất gel rất trong, tạo điều kiện thuận lợi cho việc phân tích tế bào và mô bằng kính hiển vi quang học.
Là một chất phụ gia thực phẩm, Gellan gum lần đầu tiên được phép sử dụng trong thực phẩm ở Nhật Bản năm 1988, sau đó đã được nhiều quốc gia khác như Mỹ, Canada, Trung Quốc, Hàn Quốc và Liên minh Châu Âu chấp thuận sử dụng trong thực phẩm, phi thực phẩm, mỹ phẩm và dược phẩm...
Gellan gum được sử dụng trong các loại sữa có nguồn gốc thực vật để giữ cho Protein thực vật lơ lửng trong sữa. Thành phần này cũng đã trở nên phổ biến trong ẩm thực cao cấp, đặc biệt là trong ẩm thực phân tử để tạo ra các loại gel có hương vị. Đầu bếp người Anh Heston Blumenthal và đầu bếp người Mỹ Wylie Dufresne được xem là những đầu bếp đầu tiên kết hợp Gellan gum vào ẩm thực tại nhà hàng cao cấp.
Điều chế sản xuất
Gellan gum là chất phát triển tự nhiên trên hoa súng.
Trong quy trình sản xuất nhân tạo, Gellan gum được sản xuất bằng cách lên men đường với trực khuẩn mủ xanh Pseudomonas elodea, bao gồm một đơn vị lặp lại của các Monome, Tetrasaccharide, là hai gốc của D-glucose và một trong mỗi gốc của axit D-glucuronic và L-rhamnose.
Cơ chế hoạt động
Gellan gum khi được ngậm nước thích hợp, có thể được sử dụng trong các công thức làm kem và sữa chua, hoạt động như một loại gel lỏng sau khi khuấy.
Beta glucan là gì?
Beta-glucan là một dạng Polysaccharide không đồng nhất của phức hợp Glucose polyme. Đây là chất xơ hòa tan có từ thành tế bào của vi khuẩn, nấm, nấm men, vỏ yến mạch, lúa mạch.

Từ những năm 1960, các nhà khoa học đã phát hiện và bắt đầu nghiên cứu hoạt chất này. Câu chuyện về Beta-glucan bắt đầu từ việc nghiên cứu Zymosan, một loại thuốc được sử dụng khắp châu Âu để kích thích miễn dịch, là hỗn hợp các thành phần từ thành tế bào nấm men bao gồm Protein, Lipid, Polysaccharide. Trong đó, Beta-1,3/1,6 D-glucan chính là loại Polysaccharide có tác dụng chính kích thích miễn dịch của loại thuốc này. Hoạt tính của Beta-glucan dựa vào cấu trúc phân tử, kích thước, tần số phân nhánh, sửa đổi cấu trúc, hình dạng và độ hòa tan. Những Beta-glucan có hoạt tính sinh học thường có trọng lượng phân tử lớn.
Sau này, hàng triệu nghiên cứu về Beta-glucan được thực hiện trên khắp thế giới và ứng dụng rộng rãi trong dược phẩm cho cả người và động vật. Theo các nghiên cứu khoa học, Beta-glucan chống lại các khối u lành tính hay ác tính, bệnh nhiễm khuẩn một cách hiệu quả… Có nhiều dạng Beta-glucan như (1,3/1,4), (1,3/1,6), trong đó Beta-glucan (1,3/1,6) có tác dụng lên hệ miễn dịch mạnh nhất và được sử dụng cho các sản phẩm hỗ trợ điều trị ung thư.
Beta-glucan có thể ngăn cơ thể hấp thụ Cholesterol từ thức ăn. Chúng cũng có thể kích thích hệ thống miễn dịch bằng cách tăng các hóa chất ngăn ngừa nhiễm trùng. Tổ chức FDA (Mỹ) cho phép các sản phẩm có chứa ít nhất 750mg Beta-glucan để giảm nguy cơ mắc bệnh tim.
Thành phần này cũng được sử dụng cho nhiều bệnh khác như bệnh chàm và bệnh tiểu đường, nhưng không có đủ bằng chứng khoa học để cho các công dụng này.
Điều chế sản xuất
Có hai cách để chiết xuất Beta-glucan gồm phương pháp hóa học và sinh học. Phương pháp hóa học để tách chiết Beta-glucan sử dụng các dung dịch kiềm và Acid. Tuy nhiên phương pháp này có nhược điểm là làm cho Beta-glucan bị lẫn nhiều tạp chất, phá vỡ cấu trúc, dẫn đến làm giảm hoạt tính sinh học của phân tử Beta-D-glucan. Ngoài ra, quá trình tách chiết còn thải ra nhiều sản phẩm phụ gây ô nhiễm môi trường.
Trong khi đó, phương pháp sinh học sử dụng Enzyme để tách chiết Beta-glucan. Nhiệm vụ của các Enzyme là chiết xuất Beta-1,3/1,6-D glucan bằng cách loại bỏ Protein, Lipid và một số loại Polysaccharide trong thành tế bào nấm. Phương pháp Enzyme có ưu điểm là bảo toàn được cấu trúc nguyên bản của Beta-1,3/1,6-D glucan nên giữ nguyên hoạt tính sinh học của hoạt chất này. Sử dụng Enzyme còn thân thiện với môi trường vì giảm thiểu các chất thải gây ô nhiễm.
Cơ chế hoạt động
Mặc dù là một chất xơ hòa tan nhưng Beta-glucan không được tiêu hóa mà lại làm chậm quá trình vận chuyển thức ăn trong ruột. Kết quả, Carbohydrate được hấp thụ chậm hơn, dẫn đến lượng đường trong máu ổn định hơn. Ngoài ra, Beta-glucan mang theo Cholesterol khi di chuyển chậm qua đường tiêu hóa.
Cùng với Pentylene Glycol và Caprylyl Glycol, 1,2-Hexanediol là hợp chất 1,2-glycol. Những hợp chất này chỉ khác nhau ở số lượng cacbon. Pentylene Glycol có 5 carbons, Caprylyl Glycol có 8 carbons, còn 1,2-Hexanediol có 6 carbons trong chuỗi carbon.

1, 2-Hexanediol là một loại dung môi thường được tìm thấy trong mỹ phẩm và các sản phẩm chăm sóc cá nhân dạng nước, đặc biệt là nước hoa. 1,2-Hexanediol có khả năng giúp ổn định mùi thơm, làm mềm da, đồng thời cũng giữ ẩm khá hiệu quả. Khi được dùng với nồng độ thấp, 1,2-Hexanediol sẽ liên kết với các thành phần trong các sản phẩm chứa silicone hiệu quả hơn nhiều chất dung môi khác. Bên cạnh đó, trong mỹ phẩm trang điểm, 1,2-Hexanediol được dùng để hỗ trợ phân tách các sắc tố được đồng đều hơn.
Nghiên cứu còn cho thấy, 1,2-Hexanediol có công dụng hỗ trợ khả năng kháng khuẩn của các chất bảo quản. Mặt khác, 1,2-Hexanediol còn giúp hạn chế khả năng gây kích ứng của sản phẩm cho người sử dụng.
Caprylyl Glycol là gì?
Caprylyl glycol hay còn gọi là 1,2-octanediol, là một loại rượu có nguồn gốc từ Acid caprylic, một loại Acid béo bão hòa, phân tử có tám nguyên tử Cacbon. Acid caprylic là một chất lỏng không màu, mùi nhẹ, có trong sữa của một số động vật có vú cũng như trong dầu cọ và dầu dừa, có đặc tính kháng khuẩn và chống viêm.
Caprylyl glycol có trọng lượng phân tử thấp với hai nhóm hydroxyl trên mỗi phân tử.
Các tên hóa học khác của Caprylyl glycol gồm 1,2-di-hydroxyoctan; 1,2-octanediol và 1,2-octylen glycol.
Caprylyl glycol là một chất tăng cường bảo quản, có thể thay thế các chất bảo quản truyền thống như Paraben hoặc chất khử Formaldehyde. Đồng thời, chất này cũng giúp tăng hiệu quả hoạt động, tăng hoạt tính kháng khuẩn của các chất bảo quản khác trong công thức sản phẩm. Do đó, Caprylyl glycol hoạt động như một chất ổn định nhằm kéo dài thời hạn sử dụng sản phẩm và giúp ngăn ngừa các thành phần khác bị hư hỏng.
Caprylyl glycol còn được sử dụng như một chất giữ ẩm và dưỡng chất trong các sản phẩm chăm sóc cá nhân, chủ yếu là sản phẩm bôi ngoài da, đồng thời sửa đổi độ nhớt của sản phẩm.

Điều chế sản xuất
Trong công nghiệp, Caprylyl glycol được sản xuất tổng hợp, thường bắt đầu bằng việc tổng hợp Ethylene glycol hay còn gọi đơn giản là 1,2-glycols. Đây là quá trình oxy hóa nhiệt của Ethylene oxide với nước. Việc sản xuất Ethylene oxide tổng hợp bao gồm cả Caprylyl glycol và thường được thực hiện thông qua quá trình oxy hóa xúc tác của oxit kiềm tương ứng hoặc khử axit 2-hydroxy tương ứng.
Cơ chế hoạt động
Cấu trúc của Caprylyl glycol mang đến lợi ích kháng khuẩn, giúp tăng hiệu quả bảo quản khi kết hợp với nhiều loại chất bảo quản khác.
Caprylyl glycol có thể hoạt động như một chất bảo quản chống lại vi khuẩn trong các công thức dầu và nước. Tuy nhiên, chất này có hiệu quả hạn chế đối với nấm. Do đó, để bảo vệ kháng khuẩn phổ rộng, Caprylyl glycol thường được sử dụng cùng với các chất bảo quản khác trong hệ thống. Caprylyl glycol thường kết hợp với Phenoxyethanol và Chloroxylenol, hai chất bảo quản đáp ứng được quy định toàn cầu hiện nay.
Sự kết hợp giữa Phenoxyethanol và Caprylyl Glycol tạo nên hỗn hợp gọi là Optiphen, giúp sản phẩm chống lại sự phát triển của các vi sinh vật.
Với cách kết hợp này, hiệu quả kháng khuẩn được nâng cao và khả năng hòa tan của một số chất bảo quản truyền thống được nâng cao chẳng hạn như Paraben và Phenoxyethanol.
Axit stearic là gì?
Axit Stearic là acid béo bão hòa gồm một chuỗi 18 cacbon, có công thức hóa học CH3-(CH2)16-COOH và có tên IUPAC là acid octadecanoic.
Axit stearic là một axit béo no, chuỗi dài được tìm thấy trong các chất béo động vật và thực vật khác nhau. Về cơ bản, hoạt chất này như một chất béo dưỡng ẩm. Đây là một thành phần tự nhiên, cụ thể là bơ ca cao và bơ hạt mỡ có trong một số thành phần của kem dưỡng ẩm da.

Thành phần này được làm chất phụ gia để sản xuất rất nhiều sản phẩm chăm sóc tóc, da cũng như một số chất tẩy rửa gia dụng.
Axit Stearic có màu trắng tới hơi vàng ở thể rắn với 2 dạng đó là tinh thể và dạng bột. Hoạt chất này có khối lượng phân tử: 284,48 (g/mol), điểm tan chảy 69,4 độ C và điểm phân hủy là 350 độ C.
Điều chế sản xuất Axit stearic
Quá trình chưng cất các chất béo và các loại mỡ thực vật với nước ở áp suất cao và nhiệt độ trên 200 độ C dẫn đến quá trình thủy phân được tạo thành axit stearic. Thành phần axit stearic thường là hỗn hợp giữa panmitic và axit stearic. Axit stearic còn được sản xuất bằng phương pháp khác. Từ tinh bột thông qua hydro hóa các axit béo không no có ở dầu thực vật và tổng hợp thông qua acetyl-CoA để được axit stearic.
Cơ chế hoạt động của Axit stearic
Một số nghiên cứu đã xác định cơ chế axit stearic (18:0) ức chế chọn lọc các phản ứng miễn dịch phụ thuộc vào tế bào T trong ống nghiệm. Trong quá trình ủ các tế bào B và T được kích hoạt bằng mitogen với tỷ lệ 18: 0 dẫn đến các kiểu kết hợp axit béo bão hòa khác nhau vào màng của chúng. Các phân tích sắc ký lỏng hiệu suất cao (HPLC) của tế bào T cho thấy sự tích tụ của phosphatidylcholine (PC) có chứa phosphatidylcholine (PC) 18:0 không bão hòa đã thay thế PC tế bào bình thường.
Một số ít PC được tìm thấy tích tụ trong màng tế bào B làm tăng tỷ lệ PC chứa axit oleic (18:1). Các thành phần lipid khác nhau của màng tế bào lymphocyte sau khi tiếp xúc với tỷ lệ 18:0 có tương quan với điện thế màng sinh chất của chúng.
Trong các tế bào T, sự tích tụ không bão hòa, PC chứa 18:0 trùng hợp với sự phá vỡ nhanh chóng tính toàn vẹn của màng, được xác định bằng phương pháp đo tế bào dòng chảy. Sự phá vỡ tính toàn vẹn của màng được phát hiện phụ thuộc vào thời gian và liều lượng. Nghiên cứu không quan sát thấy có sự khử cực nào như vậy trong các tế bào B, nhờ khả năng khử bão hòa, có thể tránh kết hợp một lượng lớn các phospholipid có chứa 18:0 không bão hòa vào màng của chúng.
Người ta cho rằng sự thiếu hụt stearoyl-CoA desaturase trong tế bào T sẽ ngăn chúng khỏi quá trình khử bão hòa có nguồn gốc ngoại sinh 18:0, do đó dẫn đến tăng tỷ lệ PC không bão hòa có chứa 18: 0 trong màng tế bào của chúng. Sự phong phú của loài PC này có thể tăng cường độ cứng của màng sinh chất bị suy giảm đáng kể.
B-White là gì?
B-White là hợp chất bao gồm nhiều chất hóa học bao gồm: Purifiled water, niacinamide, glycerin, boron nitride, cetearyl alcohol, ceteareth-2, ceteareth 25, glycyrthlza glabra extract, butyrospermum parkii argania spinosa kenerol, persea gratissima oil, glycolic acid, polysorbate 80, allantoin, alpha arbutin...
B-White là một nguyên liệu mỹ phẩm giúp trắng da có khả năng ức chế quá trình tăng sinh hắc sắc tố melanin của tế bào. Từ đó những sản phẩm chứa B-White giúp cải thiện các vùng da bị đen sạm, sẫm màu, làn da kém sắc.
Trong hoạt chất trắng da B-White có chứa hai hoạt chất liên quan sự hình thành sắc tố là arbutin và albatin. Hai chất trên giúp ngăn chặn đồng thời điều chỉnh các hắc sắc tố ở tầng biểu bì của da nên làm sáng, đều màu các vùng da bị đen sạm, tối màu, và dưỡng trắng da.
Nguyên liệu mỹ phẩm, hoạt chất trắng da B-White có khả năng ức chế trung tâm hoạt động MITF - nơi điều khiển ezyme Tyrosinase sản sinh ra sắc tố tối màu melanin để từ đó ngăn chặn các tác nhân gây nám, tàn nhang và sạm da, da tối màu,…
Điều chế sản xuất B-White thế nào?
Nguyên liệu mỹ phẩm trắng B-White này có thể làm được điều nhờ vào công nghệ siêu thẩm thấu Ecogel. Ecogel là công nghệ đã đạt được chứng chỉ Ecocert với ưu điểm nổi bật là làm tăng khả năng thâm nhập và dẫn truyền các hoạt chất này vào sâu trong các tế bào da nhằm nâng cao mức độ hiệu quả của sản phẩm một cách ưu việt, nhanh chóng và rõ rệt.
Cơ chế hoạt động B-White ra sao?
Ta biết rằng sự thâm, sậm, tăng sức tố da liên quan đến một chất có tên gọi melanin hiện diện trên da. Quá trình hình thành chất này được miêu tả cụ thể như sau. Ban đầu enzyme Tyrosinase chuyển Tyrosin thành Melanin. Sự tổng hợp Melanin tạo ra sắc tố da. Và các hạt sắc tố được vận chuyển đến các tế bào sừng dọc theo các tua. Bên trong các tế bào sừng, Melanin lắng đọng thành các chắn bao quanh nhân của tế bào. Tại đây, Melanin được xem như là một chắn hấp thụ và phản chiếu tia UV. Do đó, DNA trong các tế bào da được bảo vệ dưới sự chống tia UV hiệu quả nhất. Từ đó ngăn chặn các tác nhân gây nám da, đen sạm da, da tối màu,…
Ức chế trung tâm hoạt động MITF: MITF được xem như yếu tố gốc rễ của nguyên nhân gây sạm da, đen da.
Ức chế Enzyme Tyrosinase dẫn đến việc giảm sự sinh ra của tế bào Melanosome hay còn gọi là tế bào biểu bì hắc tố.Kéo theo đó là sự giảm sản sinh ra sắc tố tối màu Melanin.

2 - Octanamidoacetic acid là gì?
2-octanamidoacetate acid còn được gọi là Capryloylglycine, hoặc N-octanoyl-glycine, thuộc nhóm các hợp chất hữu cơ được gọi là axit amin n-acyl-alpha. Axit amin N-acyl-alpha là các hợp chất chứa axit amin alpha mang nhóm acyl ở nguyên tử nitơ tận cùng của nó. Công thức hóa học của 2-Octanamidoacetic là: C10H19NO3.
Công thức hóa học của 2-Octanamidoacetic
2 - Octanamidoacetic acid là chất rắn có độ hòa tan vừa phải trong nước. Nó một nguyên liệu thô, các nhà cung cấp thành phần này mô tả nó như một loại bột từ trắng đến trắng nhạt. 2 - Octanamidoacetic acid chủ yếu được phát hiện trong nước tiểu. Trong tế bào, capryloylglycine chủ yếu nằm trong màng (dự đoán từ logP). 2-octanamidoacetate có thể được sinh tổng hợp từ axit octanoic và glycine.
2 - Octanamidoacetic acid thường được sử dụng như một thành phần mỹ phẩm, nơi nó có chức năng như một chất dưỡng hoặc chất hoạt động bề mặt. Nó giúp bảo vệ bề mặt da khỏi bị mất nước và có thể tăng cường hiệu quả của chất bảo quản mỹ phẩm. Các loại kem có chứa 2 - Octanamidoacetic đã được chứng minh là có khả năng ức chế sự phát triển của lông ở những người bị chứng rậm lông, do nó ức chế ornithine decarboxylase 1, có trong nang lông.
Điều chế sản xuất 2 - Octanamidoacetic acid
2 - Octanamidoacetic acid là một acylglycine bao gồm axit caprylic (một axit béo chuỗi trung bình 8 cacbon) liên hợp với glycine. Acylglycine có một chuỗi acyl béo gắn với nhóm amin của glycine thông qua một liên kết peptit. Acylglycine được sản xuất thông qua hoạt động của enzyme glycine N-acyltransferase. Acylglycines thường là chất chuyển hóa nhỏ của axit béo.
Tuy nhiên, sự bài tiết của một số acylglycine được tăng lên trong một số sai sót bẩm sinh của quá trình trao đổi chất. Trong một số trường hợp nhất định, việc đo lường các chất chuyển hóa này trong dịch cơ thể có thể được sử dụng để chẩn đoán các rối loạn liên quan đến quá trình oxy hóa beta axit béo ty thể, bao gồm thiếu hụt acyl-coenzyme A chuỗi trung bình (CoA) dehydrogenase (MCAD) và khiếm khuyết khử hydro nhiều acyl-CoA (MAD).
Cơ chế hoạt động
2-octanamidoacetate acid là một N-acylglycine có octanoyl là nhóm acyl. Nó có một vai trò như một chất chuyển hóa. Nó là một N-acylglycine và một amit béo. Nó bắt nguồn từ một axit octanoic và một glycine. Nó là một axit liên hợp của N-octanoylglycinate.
2-octanamidoacetate acid thuộc về lớp hợp chất hữu cơ được gọi là axit amin n-acyl-alpha. Axit amin N-acyl-alpha là các hợp chất chứa axit amin alpha mang nhóm acyl ở nguyên tử nitơ tận cùng của nó.
Calcium Glycerophosphate là gì?
Calcium glycerophosphate là muối canxi của axit glycerophosphoric tạo thành bột màu trắng, mịn, hơi hút ẩm. Sản phẩm thương mại là một hỗn hợp của canxi beta-, D- và L -alpha-glycerophosphat.
Calcium glycerophosphate được FDA xếp vào danh sách thành phần thực phẩm công nhận là an toàn (GRAS) như một chất bổ sung chất dinh dưỡng (nguồn canxi hoặc phốt pho). Trong các sản phẩm thực phẩm như gelatins, bánh pudding và chất trám chúng ta đều có thể tìm thấy thành phần calcium glycerophosphate.

Bên cạnh đó, calcium glycerophosphate cũng có trong các sản phẩm chăm sóc răng miệng hoặc vệ sinh răng miệng nhờ khả năng có thể thúc đẩy quá trình đệm-pH của mảng bám, nâng cao mức độ canxi và phosphat trong mảng bám và tương tác trực tiếp với khoáng chất nha khoa.
Cơ chế hoạt động
Khi kết hợp với natri monofluorophosphat, calcium glycerophosphate sẽ làm giảm khả năng hòa tan axit của men răng. Bên cạnh đó, calcium glycerophosphate cũng được cho sẽ làm tăng tác dụng tái khoáng của natri monofluorophosphate dẫn đến quá trình tái khoáng hóa men răng nhiều hơn nhưng cơ chế đằng sau điều này vẫn chưa được biết rõ.
Ngoài ra, calcium glycerophosphate còn làm giảm độ pH mảng bám được tạo ra bởi dung dịch đường sucrose. Trong chất thay thế điện giải, calcium glycerophosphate lại hoạt động như một chất cho canxi và photphat.
Alpha-Linolenic Acid là gì?
Alpha-linolenic acid là một axit béo omega-3 cần cho sự tăng trưởng, phát triển của chúng ta. Vì vậy Alpha-linolenic acid được gọi là một axit thiết yếu. Alpha-linolenic acid được tìm thấy trong thực vật, thịt đỏ và các sản phẩm từ sữa.
Alpha-linolenic acid có tác dụng ngăn ngừa và điều trị nhiều chứng bệnh của con người từ tim mạch, khớp, tiểu đường, phổi tắc nghẽn, ung thư… Mặt khác Alpha-linolenic acid có thể làm tăng nguy cơ tuyến tiền liệt ở một số nam giới.
Chúng ta biết các axit béo omega-3 khác như DHA và EPA có ở dầu cá, nhưng không phải chúng đều hoạt động cùng một cách trong cơ thể. Vì vậy axit alpha-linolenic có thể có lợi ích không giống DHA và EPA.
Điều chế sản xuất Alpha-Linolenic Acid
Alpha-Linolenic Acid (ALA) là chất béo omega-3 thiết yếu với những lợi ích sức khỏe. Phân tử này được tìm thấy tự nhiên trong các loại thực vật như hạt lanh và cải dầu, nhưng hiện đang hạn chế sản xuất. Tiềm năng sản xuất ALA bền vững bằng cách sử dụng nấm men có dầu Yarrowia lipolytica. Thông qua việc sử dụng desaturase Δ12-15 được xác định gần đây (Rk Δ12-15), có thể cho phép sản xuất Y. lipolytica.
Khi kết hợp với một chủng sản xuất quá nhiều lipid đã được thiết kế trước đây với khả năng sẵn có tiền chất cao, việc cải tiến hơn nữa trong quá trình sản xuất ALA đã được thực hiện. Việc nuôi cấy chủng này ở nhiệt độ thấp hơn làm tăng đáng kể hàm lượng ALA, với các tế bào được lên men ở 20 độ C tích lũy gần 30% ALA của tổng số lipid trong tế bào này.
Quá trình lên men ở nhiệt độ thấp thể hiện hiệu giá ALA được cải thiện lên đến 3,2 lần so với điều kiện tăng trưởng tiêu chuẩn.
Cơ chế hoạt động của Alpha-Linolenic Acid
Alpha-linolenic acid đã được chứng minh giảm nguy cơ mắc bệnh tim mạch vì hoạt chất này giúp duy trì nhịp tim. Alpha-linolenic acid có lợi cho hệ thống tim mạch, nguy cơ mắc bệnh tim mạch sẽ giảm. Alpha-linolenic acid cũng được nghiên cứu chỉ ra rằng có thể làm tan cục máu đông. Nghiên cứu cũng chỉ ra Alpha-linolenic acid không cho thấy có ảnh hưởng đáng kể đến cholesterol.
Broccophane là gì?
Broccophane chiết xuất từ mầm bông cải non giàu Sulforaphane (SFN) - chất chống oxy hóa. Nghiên cứu đã chỉ ra rằng Sulforaphane kích hoạt một số enzyme trong cơ thể mang lại nhiều lợi ích cho sức khỏe. Những enzyme này đóng vai trò quan trọng trong việc khử độc giúp cơ thể chống lại tình trạng stress oxy hóa.
Sulforaphane được ca ngợi là chất kích hoạt tự nhiên mạnh nhất của các enzyme khử độc giai đoạn II. Điều đó có nghĩa là nó giúp cơ thể chống độc, tự sửa chữa và phát triển. Hãy tưởng tượng Sulforaphane như lớp áo cho tế bào khỏi những tổn thương.

Điều chế sản xuất Broccophane
Chúng ta có thể tự làm bột mầm bông cải xanh tại nhà để sử dụng làm bột cháo ăn dặm cho trẻ em hoặc trong các món ăn khác như súp, cháo dinh dưỡng,...
Chuẩn bị nguyên liệu:
- Hạt mầm bông cải xanh;
- Bình hoặc hũ thủy tinh có nắp lưới.
Quy trình làm:
- Sử dụng hai muỗng canh hạt bông cải xanh vào bình đã chuẩn bị.
- Đổ nước vào khoảng nửa bình và đặt nắp lưới.
- Để bình ở nhiệt độ phòng trong 8 giờ hoặc qua đêm để hạt nảy mầm.
Sấy khô và nghiền bột:
- Sau khi hạt đã nảy mầm, sấy khô chúng bằng phương pháp sấy lạnh hoặc sấy thăng hoa.
- Nghiền hạt mầm đã sấy khô thành bột mịn.
Lưu trữ và sử dụng:
- Bột mầm bông cải xanh sấy lạnh có đặc điểm là khô, kết cấu đặc, dai dai.
- Bảo quản bột trong hũ kín, nơi khô ráo và thoáng mát.
- Sử dụng bột mầm bông cải xanh làm gia vị hoặc chất tạo màu trong các món ăn đặc biệt là các món xào, mì tôm và nhiều món khác.
Cơ chế hoạt động
Broccophane có tác dụng bảo vệ võng mạc nhờ tăng cường chuyển mã thông tin giữa các tế bào, làm chậm quá trình thoái hóa và cuối cùng là bảo vệ tế bào, đồng thời có tác dụng giảm viêm nhờ giảm interleukin (IL) -4 và IL-5,… và một số tiềm năng khác đang khám phá.

Alpha Arbutin là gì?
Alpha Arbutin là một dạng của Arbutin - thành phần thường thấy trong các sản phẩm dùng làm trắng da. Arbutin, về mặt hóa học arbutin, được xem là một dạng của hydroquinone (chất làm trắng da) nhưng trong phân tử arbutin lại chứa thêm glucose. Nói thêm về hydroquinone, đây là chất có khả năng giúp làm sáng da; tuy nhiên nếu chúng ta dùng nó không kiểm soát sẽ có thể gây ra tác dụng phụ lớn, bao gồm việc mất màu da vĩnh viễn. Trên thế giới, nhiều nước đã có quy định cấm sử dụng hydroquinone.

Với Arbutin, việc làm sáng da lành tính hơn rất nhiều. Arbutin không làm hại các tế bào melanocytes tự nhiên trong cơ thể, thay vào đó nó sẽ giúp ức chế enzyme trong tế bào – vốn được biết đến là nơi sản sinh ra melanin. Nói cách khác, Arbutin có công dụng ngăn chặn hoạt động của melanin; đồng thời giải quyết các vấn đề liên quan đến làn da như phục hồi da bị nám, tàn nhang, không đều màu. Làn da sẽ dần trắng sáng lên một cách tự nhiên, mà không bị ảnh hưởng tiêu cực nào. Điều này lý giải vì sao Arbutin, đặc biệt là Alpha Arbutin được các nhà nghiên cứu mỹ phẩm ưu tiên chọn đưa vào công thức với vai trò là thành phần dưỡng trắng da.
Alpha Arbutin có thể được tìm thấy ở một số loại quả và ngũ cốc như việt quất, nam việt quất, quả dâu gấu, lúa mì, lê… Trong đó, phổ biến nhất là quả dâu gấu đã được sử dụng hàng trăm năm qua như một loại kháng sinh tự nhiên.

Alpha Arbutin được yêu thích là nhờ là sự lành tính của nó. Hiện nay, chưa có một nghiên cứu nào cho thấy chắc chắn rằng khi dùng Alpha Arbutin ở lượng lớn và lâu dài có thể làm hại da. Hầu hết nồng độ có trong mỹ phẩm được kiểm soát rất tốt, đều ở mức vừa phải, có thể phát huy tối đa công dụng mà lại an toàn. Nếu bạn muốn tìm sản phẩm trắng da phù hợp với da, không gây tác dụng phụ thì Alpha Arbutin là một lựa chọn sáng suốt.
Arbutin có hai dạng là alpha và beta. Alpha là dạng Arbutin tinh khiết nhất hiện nay nên thường có mức giá khá cao. Tuy nhiên, so với dạng beta thì alpha cho mức độ ổn định cao hơn và có tác dụng ức chế mạnh hơn. Alpha Arbutin tồn tại ở dạng bột tinh thể màu trắng, tan được trong nước nên da dễ dàng hấp thụ, độ pH dao động ở mức 3,5 – 6,5.
Điều chế sản xuất Alpha Arbutin
Alpha Arbutin là hoạt chất có nguồn gốc thực vật, thu được từ quá trình thủy phân glucoside nên có độ an toàn rất cao.

Trong tự nhiên, Alpha-Arbutin được chiết xuất từ cây Bearberry. Ngoài ra, Alpha Arbutin cũng được tìm thấy trong mầm lúa mì, da lê, trong lá của quả việt quất và nam việt quất. Tuy nhiên, việc chiết xuất arbutin từ tự nhiên không dễ dàng nên hiện tại có khá nhiều arbutin được tổng hợp từ phòng thí nghiệm.
Cơ chế hoạt động của Alpha Arbutin
Các Alpha Arbutin có cơ chế hoạt động thông qua quá trình giải phóng có kiểm soát gây ức chế quá trình oxy hóa của L-tyrosine (hoạt động monophenolase) được xúc tác bởi men tyrosinase và chống lại hoạt động liên kết trong tyrosinase.
Nhờ phân tử có thêm Glucose, Arbutin sẽ ức chế các enzyme sản sinh ra melanin trong tế bào, từ đó giúp trắng da, nâng tone màu da.

So với khi sử dụng các Hydroquinone (chất làm trắng da) trực tiếp, Arbutin ít gây kích ứng hơn cũng như xảy ra tác dụng phụ không mong muốn. Nhờ đó, hiệu quả mang lại cũng vững chắc và không hại da hơn.
Sản phẩm liên quan










