Natri PCA (Sodium Pyrrolidone Caboxylic Acid)
Phân loại:
Thành phần khác
Mô tả:
Sodium Pyrrolidone Caboxylic Acid là gì?
Sodium Pyrrolidone Caboxylic Acid là dạng muối của axit pyrrolidone carboxylic (hay axit pyroglutamic), cấu trúc hóa học chứa vòng lactam. Năm 1882, nhà hóa học Haitinger lần đầu tiên tìm thấy Sodium Pyrrolidone Caboxylic Acid khi phát hiện ra rằng khi được làm nóng ở 180°C, glutamate được chuyển thành pyroglutamate thông qua việc mất một phân tử nước.

Sodium Pyrrolidone Caboxylic Acid có mặt trong hầu hết tế bào sống, bao gồm cả vi khuẩn cho đến người. PCA có nguồn gốc từ chất chống oxy hóa glutathione thông qua hoạt động của enzyme γ-glutamyl cyclotransferase.
Điều chế sản xuất
Sodium Pyrrolidone Caboxylic Acid thương mại được tạo ra thông qua sự phân hủy protein filaggrin trong tế bào ngô.
Cơ chế hoạt động
Các tế bào da chết (Corneocytes) sẽ tạo nên lớp sừng, lớp ngoài cùng của da đóng vai trò là hàng rào bảo vệ. Trong lớp sừng, Sodium Pyrrolidone Caboxylic Acid cùng những hợp chất nhỏ (đường và chất điện giải) sẽ tạo thành yếu tố giữ ẩm tự nhiên (NMF) cho da.
Cùng với các lipit tự nhiên trong da, các thành phần NMF sẽ giữ bề mặt da được săn chắc, dẻo dai và ngậm nước.
Dược động học:
Dược lực học:
Xem thêm
Lactobacillus là gì?
Men vi sinh (Probiotic) hay còn gọi là lợi khuẩn, là những vi sinh vật (vi khuẩn hoặc nấm men) ở trong cơ thể, mang lại nhiều lợi ích cho sức khỏe nếu tồn tại với số lượng hợp lý. Chúng cũng là một phần của hệ miễn dịch. Có hai loại lợi khuẩn phố biến là Bifidobacteria và Lactobacillus.

Vi khuẩn Lactobacillus thường xuất hiện ở trong hệ tiêu hóa, hệ bài tiết và hệ sinh dục của cơ thể người. Ngoài ra, chúng còn được tìm thấy trong các loại thực phẩm lên men như sữa chua, các loại dưa chua, nấm sữa, ô-liu, một số loại đậu, hạt lên men hay một số các sản phẩm thực phẩm chức năng.
Lactobacillus tạo ra Lactase, Enzyme giúp phân giải Lactose. Những vi khuẩn này cũng tạo ra Acid lactic giúp kiểm soát quần thể vi khuẩn có hại.
Mỹ phẩm chứa lợi khuẩn có ba loại gồm: Mỹ phẩm với vi khuẩn “sống”, mỹ phẩm với vi khuẩn “ngừng hoạt động” và mỹ phẩm lên men.
Điều chế sản xuất Lactobacillus
Chế phẩm Lacidophilus được điều chế từ môi trường nuôi cấy đậm đặc, làm khô, có khả năng sống và phát triển khi uống hoặc được điều chế từ xác vi khuẩn bị giết chết bằng nhiệt. Sữa chua là một nguồn phổ biến cung cấp vi sinh tạo Acid lactic.
Cơ chế hoạt động
Trong môi trường không có không khí, các lợi khuẩn Lactobacillus có khả năng phân nhỏ đường và Protein trong chất hữu cơ, chuyển hóa chúng thành Acid lactic sau một thời gian ủ men. Với tính chất tương tự như nhiều loại khuẩn Acid lactic khác, Lactobacillus tạo nên một môi trường mang tính axit giúp hạn chế sự phát triển của vi trùng và vi khuẩn có hại, đồng thời chia nhỏ các thành phần bổ dưỡng để chúng trở nên đậm đặc và giàu dưỡng chất hơn.
Ngoài ra, Lactobacillus còn thúc đẩy việc sản xuất của các thành phần có lợi khác như Amino acid, các Peptide hay Protein kháng sinh mới, có khả năng kháng khuẩn phổ rộng. Quá trình lên men sẽ cho ra một phiên bản mới của thành phần gốc nhưng bền vững, cô đặc và giàu dinh dưỡng hơn gấp nhiều lần ban đầu.
L-Threonine là gì?
L-Threonin là một α-amino axit có công thức hóa học HO₂CCHCHCH₃, đồng thời cũng là một axit amin thiết yếu có phân cực. Threonin là một trong hai axit amin sinh protein mang một nhóm ancol, giống như serin, là một trong hai axit amin thiết yếu có nhánh bên đối xứng.
L-Threonine là một axit amin thiết yếu nhưng axit amin này có thể sử dụng để tạo ra protein. Các axit amin thiết yếu phải được lấy từ thực phẩm thông qua chế độ ăn uống, cơ thể không thể tự tạo ra được.

L-threonine được mọi người sử dụng khi bị rối loạn kiểm soát cơ bắp, độ căng cơ, yếu và cứng cơ ở chân, bệnh xơ cứng teo cơ bên hoặc ALS (Lou Gehrig). Còn một số hạn chế là các bằng chứng khoa học về những công dụng này vẫn chưa được khẳng định chắc chắn.
Điều chế sản xuất L-Threonine
Các nhà sản xuất axit amin thường được phát triển bằng cách gây đột biến ngẫu nhiên, lặp đi lặp lại do khó khăn trong việc thiết kế hợp lý mạng lưới trao đổi chất phức tạp và được điều chỉnh cao. Ở đây, chúng tôi báo cáo sự phát triển của chủng Escherichia coli sản sinh quá mức L -threonine đã được xác định về mặt di truyền bằng kỹ thuật chuyển hóa hệ thống. Sự ức chế phản hồi của aspartokinase I và III (được mã hóa bởi thrA và lysC, tương ứng) và các quy định về suy giảm phiên mã (nằm trong thrL) đã bị loại bỏ.
Các con đường cho sự suy thoái Thr đã bị loại bỏ bằng cách xóa tdh và làm biến đổi ilvA. Các meta và Lysagen đã bị xóa để tạo ra nhiều tiền chất hơn cho quá trình sinh tổng hợp Thr. Các gen mục tiêu khác sẽ được thiết kế đã được xác định bằng cách lập hồ sơ phiên mã kết hợp với phân tích phản ứng thông lượng silico, và mức độ biểu hiện của chúng được điều chỉnh theo đó.
Chủng E. coli được biến đổi gen cuối cùng có thể tạo ra Thr với năng suất cao là 0,393g mỗi gam glucoza, và 82,4g/l Thr bằng cách nuôi cấy theo mẻ. Chiến lược kỹ thuật chuyển hóa hệ thống được báo cáo ở đây có thể được sử dụng rộng rãi để phát triển các sinh vật được xác định về mặt di truyền nhằm sản xuất hiệu quả các sản phẩm sinh học khác nhau.
Cơ chế hoạt động của L-Threonine
L-Threonine khi vào cơ thể, được cơ thể biến đổi thành một hóa chất gọi là glycine. Hoạt chất glycine hoạt động trong não, để điều tiết sự co thắt cơ bắp không mong muốn.
Sodium Benzoate là gì?
Sodium Benzoate (hay còn gọi Natri Benzoate), công thức hóa học là C6H5COONa, muối của acid benzoic, có dạng bột trắng, không mùi, có tính tan mạnh trong nước, là một trong số 29 chất được dùng như chất phụ gia thực phẩm.
Sodium Benzoate là một chất bảo quản vì có khả năng tiêu diệt nấm mốc và vi khuẩn, thường dùng làm chất bảo quản trong các loại bánh kẹo, mứt, nước hoa quả, nước ngọt có gas, các loại nước xốt, súp thịt, ngũ cốc, sản phẩm từ thịt gia súc, gia cầm, thủy sản, nước chấm, sữa lên men, cà phê…

Ngoài ra, Sodium Benzoate còn được dùng trong kem đánh răng, hóa mỹ phẩm, dược phẩm như một chất bảo quản trong mỹ phẩm (ký hiệu quốc tế là E. 211). Theo quy ước đặc tính gây độc của Tổ chức quản lý độc chất quốc tế, Sodium Benzoate được xếp vào nhóm không gây ung thư, mà thuộc nhóm “Một số người cần tránh” (Certain people should avoid), vì nó có thể gây dị ứng cho đối tượng có cơ địa “nhạy cảm với hóa chất” (tương tự bột ngọt, đường lactose, sulphite…).
Bên cạnh đó, Sodium Benzoate còn là chất tạo hương thơm và chống ăn mòn cho sản phẩm. Khi kết hợp với caffeine trong Caffeine Sodium Benzoate, nó có thể có tác dụng chống nắng, và cung cấp màng bảo vệ UVB và chống oxy hóa cho da.
Ngoài dạng được điều chế hóa học, Sodium Benzoate cũng có thể được tìm thấy tự nhiên trong các loại trái cây như trái việt quất (cranberry), đào, mận, nho, táo, quế (thành phần chính là cinnamic acid, chất đồng chuyển hóa của benzoic acid), cây đinh hương (clove), nhóm cây bách (berries)… với hàm lượng từ 10-20mg/kg.
Điều chế sản xuất Sodium Benzoate
Sodium Benzoate được sản xuất bằng cách trung hòa axit benzoic với natri bicarbonate, natri cacbonat hoặc natri hydroxit.
Cơ chế hoạt động của Sodium Benzoate
Cơ chế hoạt động bảo quản của Sodium Benzoate hoặc Natri Benzoat phụ thuộc vào các phân tử undissociated, lipophilic không dissociable axit Benzoic E210 là mạnh mẽ, và dễ dàng đi qua màng tế bào, sau đó nhập vào trong tế bào, can thiệp với các mốc và vi khuẩn và tính thấm của màng tế bào vi khuẩn, cản trở sự hấp thụ của màng tế bào chống lại các axit amin.

Sodium Benzoate truy cập vào tế bào nội bào, có thể acid lí nội bào và ức chế hoạt động của các enzym hô hấp tế bào vi khuẩn, chơi một tác dụng bảo quản.
Benzoates là chất kháng sinh phổ rộng hoạt động tốt chống nấm men, nấm mốc và một số vi khuẩn, và ức chế các vi khuẩn khác nhau ở pH 4-5 dưới tầm bắn tối đa cho phép sử dụng.
Methyl Hydroxybenzoate là gì?
Methyl Hydroxybenzoate là một loại paraben thường được sử dụng làm chất bảo quản để giúp sản phẩm có thời hạn sử dụng lâu hơn. Chúng được thêm vào thực phẩm hoặc mỹ phẩm để ngăn chặn sự phát triển của nấm mốc và các vi khuẩn có hại khác.
Methyl Hydroxybenzoate
Điều chế sản xuất
Trong khi hầu hết Methyl Hydroxybenzoate mà chúng ta nhìn thấy và sử dụng đều được sản xuất tổng hợp, Methyl Hydroxybenzoate tồn tại trong tự nhiên, thường được tìm thấy trong thực vật ở dạng Methyl Hydroxybenzoate để bảo vệ thực vật, do đặc tính chống nấm, chống vi khuẩn.
Cơ chế hoạt động
Cơ chế của Methyl Hydroxybenzoate có thể liên quan đến suy ty thể phụ thuộc vào sự cảm ứng chuyển đổi tính thấm màng kèm theo sự khử cực của ty thể và sự cạn kiệt ATP của tế bào thông qua sự tách rời của quá trình phosphoryl hóa oxy hóa.
Sucrose Dilaurate là gì?
Sucrose Dilaurate là chất phân hủy axit lauric và Sucrose. Sucrose Dilaurate là một Este axit béo Sucrose.
Este axit béo sacaroza là các este của đường sacaroza với các axit béo ăn được. Chúng có thể được điều chế từ sacaroza và metyl và etyl este của axit béo ăn được thường khi có mặt của dung môi. Một quy trình khác là phản ứng chất béo hoặc dầu ăn được và sacaroza để tạo ra một hỗn hợp các este sacaroza của axit béo và mono- và diglycerid, chúng đôi khi được gọi là “sucroglycerid”.
Este axit béo Sucrose gồm Sucrose Dilaurate, Sucrose Distearate, Sucrose Hexaerucate; Sucrose Hexaoleate / Hexapalmitate / Hexastearate, Sucrose Hexapalmitate,.... bao gồm sucrose, còn được gọi là đường ăn, kết hợp với các axit béo cụ thể khác nhau, hoặc sucrose kết hợp với hỗn hợp các axit béo từ các loại thực vật cụ thể (Sucrose Cocoate, Sucrose Polycottonseedate, Sucrose Polypalmate, Sucrose Polysoyate). Nhiều axit béo, bao gồm Axit Stearic, Axit Lauric, Axit Myristic, Axit Oleic, Axit Palmitic và Axit Dừa có trong thực phẩm.
Trong mỹ phẩm và các sản phẩm chăm sóc cá nhân, Sucrose Fatty Acid Esters được sử dụng trong nhiều loại sản phẩm như sản phẩm tắm, sản phẩm làm sạch, sản phẩm trang điểm, chế phẩm tay và cơ thể, sản phẩm chống nắng và dầu gội.
Sucrose Dilaurate là chất bột màu trắng. Mặc dù được sản xuất từ sucrose, các este sucrose không có vị ngọt mà nhạt hoặc đắng.
Công thức hóa học của Sucrose Dilaurate
Các tính chất của Sucrose Dilaurate là:
Ổn định nhiệt
Điểm nóng chảy của Sucrose Dilaurate là từ 40 ° C đến 60 ° C.. Các este sucrose có thể được đun nóng đến 185 ° C mà không làm mất chức năng của chúng.
PH ổn định
Sucrose Dilaurate bền trong pH từ 4 đến 8, vì vậy chúng có thể được sử dụng như một chất phụ gia trong hầu hết các loại thực phẩm. Ở pH cao hơn 8, quá trình xà phòng hóa (thủy phân liên kết este để giải phóng sacaroza ban đầu và muối của axit béo) có thể xảy ra. Quá trình thủy phân cũng có thể xảy ra ở pH thấp hơn 4.
Điều chế sản xuất Sucrose Dilaurate
Sucrose pha loãng có thể được phân tích bằng phương pháp HPLC pha ngược (RP) này với các điều kiện đơn giản. Pha động chứa axetonitril (MeCN), nước và axit photphoric. Đối với các ứng dụng tương thích với Mass-Spec (MS), axit photphoric cần được thay thế bằng axit formic. Các cột hạt nhỏ hơn 3 µm có sẵn cho các ứng dụng UPLC nhanh. Phương pháp sắc ký lỏng này có thể mở rộng và có thể được sử dụng để phân lập các tạp chất trong quá trình phân tách chuẩn bị. Nó cũng thích hợp cho dược động học.
Cơ chế hoạt động
Nhóm chất này rất đáng chú ý đối với phạm vi cân bằng ưa nước-ưa béo (HLB) mà nó bao gồm. Phần gốc sacaroza phân cực đóng vai trò là phần cuối ưa nước của phân tử, trong khi chuỗi axit béo dài đóng vai trò là phần cuối ưa béo của phân tử. Do đặc tính lưỡng tính này, các este sucrose hoạt động như chất nhũ hóa; tức là chúng có khả năng liên kết đồng thời cả nước và dầu.
Potassium Laureth Phosphate là gì?
Potassium Laureth Phosphate có tên gọi khác là Kali Laureth Phosphate. Potassium Laureth Phosphate là muối kali của hỗn hợp các este photphat của rượu lauryl đã oxy hóa với giá trị etoxy hóa trung bình từ 1 đến 3. Potassium Laureth Phosphate có công thức hóa học là C12H25K2O4P.

Potassium Laureth Phosphate tồn tại dạng chất lỏng dạng sệt màu trắng đục hoặc trong mờ với một lượng nhỏ tinh thể vẩy phosphate.
Điều chế sản xuất Potassium Laureth Phosphate như thế nào?
Alkyl phosphate có thể được điều chế bằng phản ứng của rượu béo với axit polyphosphoric để tạo ra alkyl phosphat tương ứng.
Thành phần phân tử ion trong công thức hay gặp nhất là muối của natri (sodium salts), sau đó là potassium.
Tùy vị trí gắn nhóm phosphate ta có các sản phẩm cụ thể như sau: Kali Laureth-2 Phosphate; Kali Laureth-3 Phosphate; Kali Laureth-4 Phosphate; Kali Laureth-7 Phosphate; Kali Laureth-8 Phosphate; Kali Laureth-10 Phosphate;
Cơ chế hoạt động Potassium Laureth Phosphate là gì?
Chất nhũ hóa chứa cả đầu ưa nước và ưa dầu. Khi bổ sung vào hệ dầu nước, phần đầu ưa dầu bao quanh giọt dầu, và phần ưa nước kết hợp với nước (hệ nước dầu ngược lại). Nhờ nguyên lý này, chất nhũ hóa sẽ làm giảm sự phân tách giữa dầu và nước, tạo lớp bảo vệ quanh pha dầu và giúp các giọt dầu đều và ngăn chúng đọng trở lại.
Trong mỹ phẩm, hệ nước trong dầu (W/O) là hệ nhũ tương cơ bản. Trong hệ nhũ tương này, dầu bao quanh nước, dầu tác động lên da trước sau đó đến nước, cả hai đều được hấp thụ vào da.
Tên gọi, danh pháp
Tên Tiếng Việt: Sâm bố chính.
Tên khác: Sâm báo, Thổ hào sâm.
Tên khoa học: Abelmoschus sagittifolius, thuộc họ Malvaceae.
Đặc điểm tự nhiên
Sâm bố chính là một loài cây thân thảo, sống lâu năm cao từ 30-50 cm, mọc đứng một cách yếu ớt có khi dựa vào những cây xung quanh. Thân cành có thể mọc đứng cũng có khi bò lan tỏa ra mặt đất, cành hình trụ và không có lông. Lá đơn, mọc cách, có lá kèm hình chỉ. Các lá càng lên phía ngọn cây thì càng hẹp, phiến lá xẻ thùy 3-5 hoặc dạng mũi mác, mép lá có răng cưa thưa và đều, hai mặt có lông.

Rễ phát triển thành củ hình trụ, màu trắng hoặc vàng nhạt, đường kính từ 1,5-2 cm. Hoa màu sâm bố chính màu đỏ hoặc hồng mọc đơn độc ở kẽ lá, cuống hoa dài từ 5-8 cm, có lông cứng. Quả hình trứng nhọn, dài gấp 3 lần đài, có khía dọc, quả nang, khi quả chín thì các lớp vỏ quả khô lại và mở ra bằng đường nứt theo khía dọc thành 5 mảnh vỏ, hai mặt đều có nhiều lông hình sao.
Quả chín có màu đen nhạt. Hạt hình thận, dài 2-3 mm, có lông tơ, lúc xanh có màu xanh nhạt, chín có màu nâu đen, mặt ngoài có những đường vân tạo thành những gợn hay những ụ màu vàng.
Phân bố, thu hái, chế biến
Phân bố: Sâm bố chính phân bố ở Úc và Châu Phi cũng như các vùng nhiệt đới và cận nhiệt đới châu Á như Trung Quốc, Ấn Độ và các nước Đông Nam Á.
Thu hái: Rễ sâm bố chính thu hái vào mùa thu đông cụ thể vào các tháng 11-12 và tháng 1-2.

Chế biến: Sâm bố chính có nhiều cách chế biến khác nhau. Có nơi đào rễ về thì cắt bỏ thân ở trên, cạo sạch vỏ ngoài, ngâm nước vo gạo một đêm rồi vớt ra để khô. Sau đó đồ cho chín rồi phơi nắng hoặc sấy cho thật khô. Có nơi đào rễ về cắt bỏ thân cạo sạch vỏ ngoài rồi phơi qua ngày rồi mang đi sấy cho thật khô. Cũng có nơi đào rễ về cắt bỏ thân và rễ con, rửa sạch ngâm vào nước phèn chua hai ngày hai đêm (cứ 10kg rể dùng 300g phèn chua tán nhỏ), rửa sạch phơi nắng hay sấy khô. Có nơi còn ngâm thêm nước gừng, gấc và đường cho thêm màu đỏ, vị cay và vị ngọt giúp tăng tác dụng điều trị và dễ uống.
Bộ phận sử dụng
Rễ củ của sâm bố chính (Radix Abelmoschi sagittifolii).
Montmorillonite là gì?
Montmorillonite được hình thành khi chúng kết tủa từ dung dịch nước dưới dạng tinh thể siêu nhỏ, nó thuộc nhóm khoáng chất phyllosilicate rất mềm được gọi là đất sét. Montmorillonit thuộc họ smectit, một loại khoáng sét 2:1, được hiểu là nó có 2 tấm tứ diện kẹp một tấm bát diện trung tâm. Nó có đường kính trung bình khoảng 1μm và độ dày 9,6nm; các hạt có hình dạng tấm với độ phóng đại khoảng 25.000 lần. Có thể sử dụng kính hiển vi điện tử mới thấy được các hạt đất sét riêng lẻ. Nhóm này bao gồm thành viên saponite.

Đất sét montmorillonite đã được sử dụng với mục đích chữa trị các vấn đề của da và cơ thể con người từ rất lâu. Nó có những tác dụng đặc biệt khác ngoài khả năng thấm hút. Người ta sử dụng đất sét trong tự nhiên như là một liệu pháp để làm đẹp, chữa bệnh và duy trì sức khỏe.
Nếu cơ thể chúng ta gặp những biến chứng hoặc thay đổi bất thường, cơ thể có thể tự phục hồi một phần. Tác dụng của đất sét montmorillonite giúp cơ thể có khả năng tự phục hồi sức khỏe bằng cách chữa bệnh một cách tự nhiên. Đối vơi làn da của chúng ta cũng vậy, khi các tế bào bị hư hại nó cũng có khả năng chữa lành và khôi phục lại vẻ đẹp ban đầu của làn da. Liệu pháp từ đất sét được bổ sung vào quá trình chăm sóc da hằng ngày sẽ giúp tăng cường khả năng phục hồi tự nhiên của làn da.
Nếu không dùng kín hiển vi điện tử thì chúng ta không thể nhìn thấy đất sét montmorillonite vì nó siêu mịn. Nó được tinh chế với độ tinh khiết cao từ bentonite – loại khoáng sét được khai thác từ các lớp địa tầng lâu đời của trái đất. Kích thước của nó nhỏ như virut (2 nanomet - 1/500.000 mm).
Điều chế sản xuất
Biến tính đất sét tinh chế: Đất sét tinh chế được biến tính bằng dung dịch H2SO4 2M theo tỉ lệ 1:20, đun ở 70oC và khuấy đều trong 4 giờ. Phương pháp lọc, rửa sản phẩm bằng nước cất đến khi hết ion SO42-. Sấy khô ở 70oC, nghiền qua rây 100 mesh, thu được montmorillonite biến tính.
Tinh chế đất sét: Dùng máy khuấy cơ trộn đều liên tục trong vòng một giờ hỗn hợp đất sét và nước cất với tỉ lệ 1:20 [khối lượng (mg): thể tích (ml)] để tạo huyền phù. Hút lấy lớp trên (chiếm khoảng 10% – 20%). Lọc, phơi và sấy khô ở 120oC. Sau đó nghiền và thu lấy phần qua rây 100 mesh (0.150mm).
Trao đổi cation cho 100ml các dung dịch ZnCl2, FeCl3, AlCl3 nồng độ 0.1M vào 10g montmorillonite biến tính. Đun khuấy từ ở 70oC trong 20 giờ. Lọc và rửa sản phẩm đến hết ion Cl- bằng nước cất. Sấy ở 120oC, nghiền và rây. Thu được montmorillonite trao đổi cation. Ký hiệu montmorillonite trao đổi cation: Tên montmorillonite-cation. Ví dụ: Montmorillonite Bình Thuận trao đổi cation Al3+: BT-Al3+.
Cơ chế hoạt động
Nó không khác gì cách thức hoạt động của thỏi nam châm, (+) hút (-), (-) hút (+) và (+) đẩy (+), (-) đẩy (-). Nó sẽ hút bụi bẩn mang điện tích dương như bã nhờn, lớp trang điểm sót lại gây tắc lỗ chân lông, vi khuẩn gây mụn vì nó mang điện tích âm… Các hạt bụi bẩn sẽ bị hút vào giữa các lớp của tinh thể Montmorillonite chúng ta có thể làm sạch khi rửa mặt.
Lipid là gì?
Lipid hay còn gọi là chất béo là những este giữa acid béo và alcol. Nó là thành phần không thể thiếu trong quá trình phát triển của con người. Lipid được tìm thấy ở cả thực vật và động vật. Bơ thực vật, dầu tinh luyện, shortening, đậu nành, đậu lạc, vừng... đều có lipid. Trong các loại trứng, thịt, cá, thuỷ sản... có nhiều lipid. Lipid thu được từ động vật gọi là mỡ, thu được từ thực vật gọi là dầu.

Nghiên cứu khoa học đã chứng minh rằng, trẻ em ở mức tiểu học thì năng lượng do lipid cung cấp cần phải đạt khoảng 30% nhu cầu năng lượng của cơ thể. Nên sử dụng lipid có nguồn gốc thực vật nên chiếm khoảng 50%. Tổng số lipid và acid béo no không được phép vượt quá 11% năng lượng khẩu phần ăn hàng ngày.
Lipid có rất nhiều loại ở thực phẩm như: Phosphorlipid, triglycerid, cholesterol, glycolipid, lipoprotein và sáp. Có 2 nhóm chính là: Lipid đơn giản cấu tạo bao gồm hydro (H), carbon (C), oxy (O) và Lipid phức tạp có tạo phức ngoài C, H, O còn có các thành phần khác như P, S…
Điều chế sản xuất
Cơ quan lipid là bào quan giàu lipid. Người ta có thể điều chỉnh việc dự trữ lipid trung tính làm nguồn năng lượng trong cơ thể. Các giọt lipid là một cách tiếp cận hiệu quả để hiểu động lực học lipid trong vi tảo.
Nghiên cứu này khám phá các điều kiện môi trường cần thiết để tạo ra lipid ở loài vi tảo Euglena gracilis như là thành phần chức năng sinh học sử dụng fluorogen phát xạ gây ra sự kết hợp lipid cụ thể, DPAS (C 20 H 16 N 2 O), và so sánh nó với phương pháp nhuộm lipid thương mại thăm dò BODIPY để hình dung quá trình sản xuất lipid in vivo.
Những nghiệm thức nghiên cứu để sản xuất lipid, môi trường Cramer – Myers biến tính (MCM), MCM không có nitơ (-), MCM không có nitơ (-) và canxi (-), MCM không có nitơ (-) và canxi (-), nhưng với glucose (+), MCM không có nitơ (-) và canxi (-), nhưng với glucose (+).
Chiếu sáng liên tục với tốc độ 70mmol photon trên m −2 s −1 ở tất cả các nghiệm thức ngoại trừ không có ánh sáng đối với xử lý 5. Các giọt lipid riêng biệt được gắn nhãn DPAS và được phát hiện bằng kính hiển vi tiêu điểm và phép đo tế bào dòng chảy để làm rõ sự hiểu biết về cơ chế làm giàu lipid trong các điều kiện khác nhau.
Nghiệm thức 1 cho thấy sản xuất lipid thấp ở E. gracilistrong điều kiện tự dưỡng, DPAS được hưởng lợi từ tín hiệu nền rất thấp. Nó nhạy hơn BODIPY đối với các phép đo huỳnh quang in vivo bán định lượng.
Đồng nhuộm với sự hiện diện của BODIPY và chất diệp lục cũng chỉ ra rằng DPAS thích hợp để tạo ảnh đa sắc với các fluorophores đỏ và xanh lục. Các nghiên cứu chứng minh DPAS là một fluorophore tương thích sinh học và quang ổn hiệu quả cao để hình dung nhanh và nhạy các giọt lipid.
Người ta dùng phương pháp nhuộm này để sàng lọc vi tảo có tiềm năng tạo ra các giọt lipid. Nó như một chất bổ sung sức khỏe cho con người.
Cơ chế hoạt động
Lipid được tiêu hóa trong cơ thể chúng ta theo con đường tiêu hóa. Quá trình diễn ra theo thứ tự bắt đầu ở khoang miệng đến dạ dày và ruột. Chuyển hóa lipid là quá trình phá vỡ các chất béo trung tính thành những đơn vị monoglyceride nhỏ hơn với sự trợ giúp của các enzyme lipase.
Quá trình tiêu hóa được bắt đầu từ khoang miệng tiêu hóa hóa học bằng enzym lipase được tiết ra trong tuyến nước bọt. Thức ăn được đưa vào miệng nghiền nát, nhào trộn thức ăn với nước bọt để dễ nuốt. Dù được nuốt nhưng Lipase không thể phá vỡ được cholesterol. Khi nuốt nó vẫn còn nguyên vẹn cho đến khi đi vào các tế bào biểu mô của ruột non. Lipid di chuyển xuống dạ dày và biến đổi hóa học lipase của dạ dày,. Lúc này, quá trình biến đổi cơ học mới bắt đầu.
Việc tiêu hóa và hấp thu chỉ xảy ra khi một chất béo đi tới vị trí của ruột non, lipase phụ thuộc muối mật và lipase tụy là chất tiết từ tuyến tụy được tiết vào ruột non nhằm giúp phân hủy chất béo trung tính cùng với quá trình biến đổi cơ học. Để có thể hấp thu vào tế bào biểu mô ruột non, Lipid được biến đổi cho đến khi chúng trở thành những đơn vị acid béo riêng lẻ. Lúc này, Lipase tuyến tụy có chức năng báo hiệu sự thủy phân chất béo trung tính thành các glycerol và acid béo tự do.

Để hấp thu được lipid nó diễn ra theo 2 con đường mạch máu và hệ bạch huyết. Lipid được tổng hợp tại gan và chuyển hóa đồng thời cũng được hấp thu vào cơ thể, lipase từ dịch tụy và tế bào niêm mạc ruột non phân hủy chất béo thành glycerol, monoglyceride và các acid béo. Các đơn vị chất béo được hấp thu tại ruột là Glycerol, monoglyceride, acid béo, cholesterol và phospholipid.
Chất béo sẽ có cách hấp thu khác nhau tùy theo từng loại. Acid béo chuỗi ngắn C2-C5, acid béo chuỗi trung bình (C6-C12) và glycerol trực tiếp hấp thu vào tế bào rồi đi vào thẳng hệ tĩnh mạch cửa. Acid béo chuỗi dài và monoglyceride được kết hợp với mật thành những hạt micelle mới hấp thu vào trong tế bào ruột và được tái tổ hợp thành triglyceride.
Quá trình hấp thu chất béo trong cơ thể bao gồm phospholipid và cholesterol. Nó có hiệu suất hấp thu thấp chỉ từ 20-40% có thể trực tiếp hấp thu vào trong tế bào ruột. Các chất béo bao gồm cholesterol, phosphorlipid và triglyceride mới trong lòng tế bào ruột non được đóng gói thành những chylomicron. Sau đó, chất béo mới đổ vào hệ bạch huyết.
Quá trình tiêu hóa và hấp thu lipid rất phức tạp. Tại thực quản và dạ dày, thức ăn qua nhanh không biến đổi, khi xuống tới ruột non biến đổi hóa học thành acid béo và glixerin nhờ enzime lipase. Chất béo được tổng hợp và chuyển hóa tại gan. Tại đây lipid cũng đã được hấp thu vào cơ thể và lượng dư thừa sẽ bị thải ra ngoài qua phân.
Chúng ta đều biết, vitamin C là chất chống oxy hóa tự nhiên được tổng hợp từ glucose có ở hầu hết các loại thực vật và động vật. Đây là loại vitamin rất cần thiết cho sự tăng trưởng và phát triển của cơ thể. Vitamin C có thể giúp làm lành các mô bị tổn thương, tham gia vào quá trình sản xuất enzyme của một số chất dẫn truyền thần kinh; đồng thời còn có vai trò quan trọng đối với chức năng hệ thống miễn dịch.

Loại vitamin này được chúng ta bổ sung cho cơ thể thông qua những thực phẩm hàng ngày như trái cây họ cam quýt, rau lá xanh, bông cải xanh, dâu tây, đu đủ... Vitamin C dùng theo đường ăn uống sẽ hấp thu hạn chế ở trong ruột, nghĩa là cho dù bạn ăn bao nhiêu vitamin C thì cơ thể cũng chỉ hấp thụ một lượng hữu hạn mà thôi. Với da, khi dùng đường uống, sinh khả dụng của vitamin C trên da sẽ là không đủ. Do đó, cách tốt nhất là chúng ta sử dụng kết hợp, vừa qua đường ăn uống vừa dùng vitamin C bôi ngoài da để đạt được những hiệu quả tốt nhất cho da.
Vitamin C tồn tại dưới nhiều dạng khác nhau, trong đó Ascorbic Acid là dạng tự nhiên có hiệu quả nhất trong tất cả các dạng của vitamin C. Tuy nhiên, Ascorbic Acid lại là dạng vitamin C kém ổn định nhất, dễ bị oxy hóa bởi ánh sáng, nhiệt độ cũng như các ion kim loại. Magnesium Ascorbyl Phosphate (MAP) là một dẫn xuất khác của vitamin C với ưu điểm là khắc phục những hạn chế của Ascorbic Acid.
Magnesium Ascorbyl Phosphate có khả năng tan trong nước, độ pH trung tính nên không gây khó chịu, ít kích ứng da nên có thể dùng cho cả những làn da nhạy cảm. Đồng thời, hoạt chất này có tác dụng kích thích sinh tổng hợp collagen, chống lão hóa da, làm sáng da cụ thể và rõ rệt hơn hẳn các dẫn xuất khác. Đặc biệt, Magnesium Ascorbyl Phosphate có tính ổn định cao hơn nhiều lần so với Ascorbic Acid. Tuy nhiên, khả năng thẩm thấu của Magnesium Ascorbyl Phosphate không được tốt như Ascorbic Acid.
Glycolic Acid là gì?
Glycolic Acid hay Axit glycolic là thành viên nhỏ nhất trong họ Alphahydroxy Acid (AHA), thuộc nhóm axit gốc nước. Axit glycolic có công thức hóa học là C2H4O3, là axit không màu, không mùi, ở thể rắn (tinh thể) có khả năng hút ẩm rất cao. Axit glycolic có thể được dễ dàng tìm thấy trong các nguyên liệu tự nhiên như mía, củ cải đường, dứa,… Hiện nay, Axit glycolic được ứng dụng khá rộng rãi trong nhiều ngành công nghiệp chế biến thực phẩm và làm đẹp.
Công thức hóa học của Axit glycolic
Với khả năng ngậm nước và thẩm thấu tốt, Axit glycolic là một trong những “thành phần vàng” được phái đẹp ưa chuộng trong làm đẹp và chăm sóc da. Axit glycolic xuất hiện hầu hết trong các sản phẩm chăm sóc da hiện nay như sữa rửa mặt, toner, kem dưỡng,… Với kết cấu phân tử nhỏ dễ dàng thấm thấu qua lớp biểu bì, Axit glycolic giúp loại bỏ các tế bào chết trên da, kích thích sản sinh collagen, cải thiện cấu trúc da, ngăn ngừa quá trình lão hóa da.
Ngoài ra, Axit glycolic còn gián tiếp giúp da hạn chế mất nước, tăng cường độ ẩm cao nhờ khả năng kích thích hoạt động của Hyaluronic acid dưới da. Với nồng độ được khuyến nghị từ 10 - 15% trong mỹ phẩm, Axit glycolic sẽ phát huy được tối đa công dụng của loại AHA này với khả năng tăng cấu trúc dưới da, giảm quá trình tạo nếp nhăn, điều trị mụn, giảm lượng melanin sau khi tổng hợp, giảm các vết thâm và chống lại các tổn hại do ánh nắng mặt trời.
Axit glycolic tăng cấu trúc dưới da, giảm quá trình tạo nếp nhăn
Tuy nhiên, vì phân tử nhỏ và độ thẩm thấu cao nên Axit glycolic cũng có khả năng gây kích ứng cao với da. Theo nghiên cứu, nồng độ Axit glycolic trong mỹ phẩm thường hạn chế ở mức 10 - 15%. Cụ thể, Axit glycolic nồng độ từ 2 – 5% được dùng tẩy tế bào chết, làm thông thoáng lỗ chân lông, hỗ trợ việc điều trị mụn và da khô. Axit glycolic từ 5 – 10% giúp da khỏe mạnh và căng mịn hơn, giảm các vết nhăn li ti và giúp làn da sáng mịn. Axit glycolic từ 12 - 15% điều trị da thâm sạm và sẹo mụn.
Điều chế và sản xuất Glycolic Acid
Glycolic acid có thể được phân lập từ các nguồn tự nhiên như mía, củ cải đường, dứa, dưa đỏ và nho chưa chín.
Ngoài ra, Glycolic acid có thể được điều chế bằng phản ứng của axit chloroacetic với natri hydroxide, sau đó tái axit hóa.
Cơ chế hoạt động của Glycolic Acid
Glycolic acid phá vỡ lớp liên kết của lớp da trên cùng bằng cách hòa tan bã nhờn và các chất liên kết tế bào lại với nhau. Sau đó, acid này sẽ giúp các tế bào da bị chết bong ra giúp bề mặt da trở nên thoáng và sáng màu hơn.
Creatine là gì?
Hoạt chất creatine phosphate là hợp chất hữu cơ, qua quá trình xúc tác tạo ra adenosine triphosphate (ATP). Dưỡng chất creatine có tự nhiên trong cơ thể chúng ta và cơ thể chuyển đổi creatine thành creatine phosphate. Creatine phosphate đưa phân tử phốt phát cho adenosine-diphosphate (ADP) nên tái sinh ATP. Năng lượng để cơ thể thực hiện các cơn co thắt cơ bắp là ATP cung cấp, tăng hiệu quả hoạt động của cơ bắp. ADP có chủ yếu là từ thịt và cá, và một phần là do cơ thể tạo ra. Chúng ta có thể bổ sung chất này thông qua ăn uống những thực phẩm giàu ADP.
Creatine nó giúp cơ bắp của bạn tạo ra năng lượng trong quá trình nâng vật nặng hoặc tập thể dục cường độ cao. ATP được tìm thấy tự nhiên trong các tế bào cơ của chúng ta.
Các vận động viên và người tập thể hình để tăng cơ, tăng cường sức mạnh và cải thiện hiệu suất tập thể dục bổ sung Creatine như một chất bổ sung phổ biến.
ADP có nhiều điểm tương đồng với các axit amin, cơ thể của bạn có thể sản xuất nó từ các axit amin glycine và arginine.

Việc bổ sung creatine không khó, chúng ta bổ sung chất này thông qua chế độ ăn uống, chủ yếu là từ thịt và cá... Ngoài ra, có một số vấn đề ảnh hưởng đến việc dự trữ creatine của cơ thể bạn.Dựa vào chế độ ăn thịt, tập thể dục, khối lượng cơ và mức độ hormone như testosterone và IGF-1. Một khối lượng lớn creatine trong cơ thể bạn được lưu trữ trong cơ bắp dưới dạng phosphocreatine nó chiếm tới 95% và 5% còn lại được tìm thấy trong não, thận và gan của bạn.
Khi bạn tăng lượng dự trữ phosphocreatine thì cần bổ sung thêm chất này, nó là một dạng năng lượng dự trữ trong tế bào, vì nó giúp cơ thể bạn sản xuất nhiều phân tử năng lượng cao gọi là ATP.
Cơ thể bạn có nhiều ATP hơn, nó có thể hoạt động tốt hơn trong quá trình tập luyện. Nó được ví như là tiền tệ năng lượng của cơ thể, creatine cũng thay đổi một số quá trình tế bào dẫn đến tăng khối lượng cơ, sức mạnh và phục hồi.
Điều chế sản xuất
Trừ những yếu tố cơ thể tự tổng hợp được thì các chất bổ sung creatine monohydrate được sản xuất bên ngoài cơ thể từ sarcosine and cyanamide. Nó được kết hợp trong một lò phản ứng với các hợp chất xúc tác khác, sarcosine tương tự như một loại muối, và đừng nhầm lẫn cyanamide với xyanua.
Ở lò phản ứng, Creatine được làm nóng, tăng áp để tạo thành các tinh thể creatine, khi đó bất kỳ hạt không mong muốn nào sẽ được loại bỏ bằng máy ly tâm trước khi được làm khô chân không. Creatine được nghiền thành bột mịn để cải thiện khả năng hòa tan, với creatine monohydrate, nó thường được nghiền đến khoảng 200 mesh để thành một loại bột cực kỳ mịn. Ở trạng thái này là nó có thể hòa tan và được hấp thụ dễ dàng khi trộn với chất lỏng để làm đồ uống.
Cơ chế hoạt động
Creatine được tiêu thụ trong chế độ ăn hằng ngày. Creatine cũng được tổng hợp nội sinh, là một quá trình liên kết và đòi hỏi sự đầu tư của ba axit amin chính: Glycine, arginine và methionine; cùng với hai enzym chính: l -arginine: glycine amidinotransferase (AGAT) và guanidinoacetate N-methyltransferase (GAMT).
Quá trình sinh tổng hợp creatine xảy ra ở thận. Khi AGAT xúc tác chuyển một phần dư amidino từ arginine thành glycine, dẫn đến sự hình thành l-ornithine và guanidinoacetate (GAA), GAA sau đó thoát ra khỏi thận và được vận chuyển đến gan. GAMT có chức năng chuyển một nhóm methyl từ S-adenosylmethionine (SAM) thành GAA, dẫn đến việc sản xuất creatine cuối cùng. Creatine hấp thu được thực hiện qua trung gian của một chất vận chuyển creatine cụ thể (CRT), còn được gọi là SLC6A8, chất vận chuyển này phụ thuộc natri và clorua. Cần ít nhất hai ion natri và một ion clorua để vận chuyển một phân tử creatine. Trong quá trình trao đổi chất và cung cấp năng lượng, vài trò của nó là các kho dự trữ creatine lớn nhất được tìm thấy trong cơ xương (~ 95%); tuy nhiên, các cửa hàng đáng chú ý khác bao gồm não, thận và gan.
Creatine có thể tồn tại ở dạng tự do hoặc ở dạng phosphoryl hóa trong nội bào, PCr. Cả creatine và PCr đều được chuyển hóa trong suốt cả ngày và mất đi một cách tự nhiên thông qua phản ứng tự phát. Không phải enzym thành creatinin, sau đó được bài tiết qua thận với tốc độ ~ 2g/ngày qua nước tiểu. Creatine và PCr, cùng với isoenzyme creatine kinase (CK), hoạt động như các hợp chất năng lượng cao tinh túy, rất quan trọng cho sự trao đổi chất. Nếu mức adenosine triphosphate (ATP) thấp hoặc nhu cầu ATP cao, CK sẽ xúc tác quá trình chuyển nhóm N -phosphoryl từ PCr thành adenosine diphosphate (ADP) để tái tổng hợp ATP, quá trình này nhanh chóng bổ sung nguồn ATP, duy trì tỷ lệ ATP: ADP và cân bằng nội môi tế bào.
Khi sản xuất ATP từ con đường đường phân hoặc oxy hóa lớn hơn việc sử dụng ATP. CK có thể hoạt động ngược lại để thu nhận và lưu trữ năng lượng tế bào này bằng cách bổ sung các kho dự trữ PCr. Chức năng chính của hệ thống creatine-phosphocreatine (hệ thống Cr-PCr) là để phục vụ như một chất đệm phosphate năng lượng cao theo thời gian.
Các CK cụ thể hiện diện trong toàn bộ tế bào là một phần không thể thiếu đối với chức năng của hệ thống Cr-PCr. Nó được tồn tại ở nhiều dạng đồng phân khác nhau. Ngoài sự phân bố dưới tế bào và sự phân chia thành từng ngăn của các CK đó, đã dẫn đến đề xuất rằng hệ thống Cr-PCr đóng một vai trò phức tạp hơn nhiều. CK tế bào (Cyt.CKs) tồn tại dưới dạng dimer, bao gồm loại cơ ( M ) hoặc loại não ( B ). Do đó, ba isoenzyme cytosolic tồn tại, creatine kinase của cơ-bắp (MM-CK), creatine kinase cơ-não (MB-CK), creatine kinase của não-não (BB-CK).
Các CK ty thể cụ thể (MtCK) cũng tồn tại. MtCK sarcomeric (sMtCK) được tìm thấy trong cơ vân và MtCK phổ biến (uMtCK) được tìm thấy trong các mô khác như não, MtCKs được tìm thấy giữa màng trong và ngoài ty thể. Khi có sự hiện diện của creatine, đảm bảo phần lớn ATP từ quá trình phosphoryl hóa oxy hóa được chuyển thành PCr, các cyt.CK được tìm thấy trong tế bào chất và tại các vị trí tiêu thụ hoặc nhu cầu năng lượng cao. Ví dụ ATPase tế bào, myofibrils, mạng lưới cơ chất, màng sinh chất.
Hệ thống Cr-PCr có khả năng hoạt động như một tàu vận chuyển năng lượng của các phốt phát năng lượng cao. Với nhiều loại CK phức tạp, sự bản địa hóa dưới tế bào của chúng. Chúng chuyển giao năng lượng giữa các vị trí sản xuất ATP ti thể và các vị trí sử dụng ATP. Chức năng của hệ thống Cr-PCr như một chất đệm phosphat năng lượng cao.
Tác động qua lại giữa cả khả năng đệm và con thoi cho phép hệ thống Cr-PCr theo dõi và ổn định một cách phức tạp tỷ lệ ATP: ADP trong tế bào, giảm thiểu sự mất nucleotide của adenin. Duy trì độ pH của tế bào thông qua đệm ion hydro và giảm phốt phát vô cơ tự do. Chính sự tương tác giữa MtCKs và Cyt.CKs đảm bảo duy trì tỷ lệ ATP: ADP trong chất nền ty thể, do đó kích thích chức năng chuỗi hô hấp khỏe mạnh. Kết quả làm giảm sự rò rỉ điện tử và giảm sản xuất ROS có hại cho ty thể.
Từ các thông tin trên rõ ràng là hệ thống Cr-PCr đóng một vai trò quan trọng trong chức năng tế bào, creatine có thể cải thiện sức khỏe và hiệu suất thể thao theo một số cách.
Vai trò chính của nó là tăng lượng dự trữ phosphocreatine trong cơ bắp của bạn trong quá trình tập thể dục cường độ cao. Các dự trữ bổ sung có thể được sử dụng để tạo ra nhiều ATP hơn. Đây là nguồn năng lượng quan trọng cho việc nâng vật nặng và tập thể dục cường độ cao.
Hoạt chất creatine tăng cơ theo những cách sau:
- Tăng cường khối lượng công việc: Tăng tổng số lượng công việc hoặc khối lượng trong một buổi tập duy nhất. Yếu tố này quan trọng trong việc phát triển cơ bắp lâu dài.
- Cải thiện tín hiệu tế bào: Hỗ trợ sửa chữa cơ và phát triển cơ mới, tăng tín hiệu tế bào vệ tinh.
- Hormone đồng hóa tăng: Nghiên cứu chỉ ra sự gia tăng hormone, sau khi dùng creatine tăng IGF-1.
- Tăng hydrat hóa tế bào: Hàm lượng nước trong các tế bào cơ của bạn được nâng cao. Gây ra hiệu ứng bay hơi tế bào có thể đóng một vai trò trong sự phát triển cơ.
- Giảm phân hủy protein: Thúc đẩy tăng tổng khối lượng cơ bằng cách giảm phân hủy cơ.
- Giảm mức myostatin: Mức protein myostatin tăng cao có thể làm chậm hoặc ức chế hoàn toàn sự phát triển cơ mới, bổ sung creatine có thể làm giảm các mức độ này, tăng khả năng tăng trưởng.
Có thể cải thiện sức khỏe của não và ngăn ngừa bệnh thần kinh bằng cách bổ sung creatine cũng làm tăng dự trữ phosphocreatine trong não của bạn.
Sản phẩm liên quan










