Insulin Pork
Phân loại:
Thành phần khác
Mô tả:
Insulin Pork là gì?
Insulin là hormone từ các tế bào đảo tụy ở tuyến tụy tiết ra. Insulin được tạo ra bằng cách phân lập tuyến tụy của động vật như bò và lợn từ những năm 1920-1980. Insulin người và lợn có sự khác biệt trong thành phần amino acid. Khi dùng insulin có nguồn gốc từ lợn đã gây ra một số tác dụng phụ. Quá trình sản xuất và làm tinh khiết insulin giai đoạn đó còn gặp nhiều khó khăn.
Công ty Genetech (Hoa Kỳ) đã sản xuất insulin bằng kỹ thuật di truyền đầu tiên vào năm 1982. Đây là lần đầu tiên các nhà nghiên cứu ứng dụng công nghệ sinh học vào dược phẩm thành công và sản phẩm được đưa ra thị trường.
Insulin chuyển hóa các chất carbohydrate trong cơ thể, insulin tác dụng đến việc chuyển hóa gan và các mô mỡ thành năng lượng ATP cung cấp cho hoạt động cơ thể. Insulin tổng hợp ở tế bào beta trong đảo tụy từ bộ máy tổng hợp protein trong tế bào, và có thể làm giảm nồng độ glucose trong máu.
Điều chế sản xuất
Các nhà nghiên cứu lần đầu tiên đã ứng dụng công nghệ sinh học vào dược phẩm thành công là năm 1982. Sản phẩm insulin là của Công ty Genetech được sản xuất bằng kỹ thuật di truyền đầu tiên.
Người ta dùng kỹ thuật tái tổ hợp AND chuyển gen mã hóa insulin vào tế bào vi khuẩn, E.coli sẽ sinh tổng hợp tạo ra loại peptit khi được nuôi cấy trong môi trường thích hợp.
Sản xuất theo quy trình sau: Cần chuẩn bị đoạn oligonucleotide mã hóa cho insulin: Theo trình tự cấu trúc các amino acid của insulin, có 2 chuỗi polypeptid A và B nối với nhau bằng hai cầu disulfur và 51 amino acid. Người ta đã mã hoá cho hai chuỗi A, B và tạo dòng gen tách biệt.

Phương pháp dùng plasmid của vi khuẩn hay nấm men, bằng enzyme hạn chế cắt plasmid. Nối đoạn gen mã hóa cho insulin tạo vector tái tổ hợp (pBR322), chuyển vector pBR322 vào vi khuẩn E.coli.
Vi khuẩn E.coli được lên men ở môi trường phù hợp, tách chiết thu được sản phẩm là polypeptid A và B. Trộn hai loại peptid bằng phương pháp hóa học enzym để xử lý để tạo cầu disulfur.
Cơ chế hoạt động
Insulin cần được gắn vào tế bào đích thông qua thụ cảm thể (receptor) của insulin trên bề mặt tế bào để phát huy tác dụng.
Dược động học:
Dược lực học:
Xem thêm
Polyvinyl Pyrrolidone (PVP) là gì?
PVP (polyvinyl pyrrolidone) là một polymer có thể hòa tan trong nước có đặc tính tạo màng. PVP là thành phần kết dính được sử dụng trong ngành mỹ phẩm và làm đẹp.

PVP lần đầu tiên được Walter Reppe tổng hợp cho một trong những dẫn xuất của hóa học acetylene và được cấp bằng sáng chế vào năm 1939 . PVP ban đầu được sử dụng như một chất thay thế huyết tương và sau đó trong rất nhiều ứng dụng trong y học, dược phẩm, mỹ phẩm và sản xuất công nghiệp.
Điều chế sản xuất
Trong một nghiên cứu đã chế tạo thành công các mẫu bột và màng mỏng ZnS:Mn-PVP với hàm lượng PVP khác nhau. Các hạt ZnS:Mn có kích thước trung bình khoảng 2-3nm được tính bằng công thức Scherrer. Hình dạng cầu của các hạt cho thấy PVP có vai trò của tác nhân bọc phủ do tương tác của ion Zn2+ với các nguyên tử O và N của polymer dị vòng PVP. Kích thước trung bình các hạt trong ảnh TEM khoảng 10nm, với lớp vỏ polymer PVP bọc phủ bên ngoài các hạt nano ZnS:Mn.
Các dải phát quang của PVP gần giống với ZnS, đóng góp huỳnh quang của màng mỏng ZnS:Mn bọc phủ PVP. Tính chất quang được tăng cường đáng kể của của ZnS:Mn-PVP và còn có thể liên quan tới các hiệu ứng giam cầm lượng tử, hiệu ứng kích thước lượng tử của các hạt nano ZnS. Khi chúng được khuếch tán trong nền PVP, điều này cần có những khảo sát tiếp theo như: phổ hấp thụ quang, phổ kích thích huỳnh quang…
Cơ chế hoạt động
PVP có thể hòa tan trong nước và các dung môi phân cực khác. Thành phần này cũng có thể hòa tan trong các loại rượu như ethanol, metanol, ở các dung môi kỳ lạ hơn như eutectic, được hình thành bởi choline chloride và urê (Relin). Khi ở trạng thái khô PVCP dễ dàng hấp thụ tới 40% trọng lượng của thành phần trong nước, khí quyển.
Đặc tính đặc biệt của PVP là làm ướt nhanh và dễ dàng tạo thành phim. Vì vậy dùng PVP như một lớp phủ hoặc phụ gia cho lớp phủ. Chất huỳnh quang của PVP và thủy phân oxy hóa của hoạt chất đã được một số nghiên cứu chỉ ra.
Isoquercitrin là gì?
Tên quốc tế: Isoquercitrin
PubChem CID: 5280804
Tên gọi khác: Isoquercetin, Hirsutrin, 3-Glucosylquercetin, Isotrifoliin, Quercetin 3-O-glucoside.
Isoquercitrin là một chất thuộc nhóm Flavonoid. Flavonoid là hợp chất cung cấp rất nhiều lợi ích cho sức khỏe. Flavonoid xuất hiện tự nhiên trong nhiều loại cây và rau quả như táo, hành tây, anh đào và nhiều hơn nữa. Isoquercitrin thuộc về một nhóm sắc tố thực vật được gọi là Flavonols (nhóm nhỏ của Flavonoid) mang lại màu sắc cho nhiều loại trái cây, hoa và rau củ.
Tất cả các Flavonoid đều có cấu trúc hóa học cơ bản giống nhau, hàng ngàn Flavonoid riêng biệt được xác định trong tự nhiên trên vô số các sự thay thế và kết hợp độc đáo. Cấu trúc phân tử của những phân tử này giống như Quercetin, nhưng một trong những nhóm hydroxyl trên vòng C đã được thay thế bằng một phân tử đường. Trong phân tử isoquercitrin, glucose được gắn vào C-3 của Quercetin.
Công thức hóa học của Isoquercitrin là C21H20O12, trọng lượng phân tử là 464.4 g/mol.

Isoquercitrin có nhiệt độ nóng chảy khoảng 226 độ C và là một tinh thể màu vàng ở nhiệt độ phòng. Độ hòa tan của nó trong nước thấp, chỉ 25.9 mg/l ở nhiệt độ phòng. Nó trở nên sẫm màu hơn sau khi được hòa tan trong nước kiềm.
Điều chế sản xuất Isoquercitrin
Isoquercitrin phân bố rộng rãi trong thực vật, bao gồm cây hàm ếch hay tam bạch thảo (Saururus chinensis), diếp cá (Houttuynia cordata), đỗ quyên lá vàng (Rhododendron gold leaf), đỗ quyên, bạch quả (Ginkgo biloba), dâu tắm trắng (Morus mulberry),... Tuy nhiên, hàm lượng isoquercitrin trung bình trong tự nhiên thấp, chỉ khoảng vài phần nghì, nên phần lớn được điều chế bằng phương pháp tổng hợp.

Isoquercitrin có hàm lượng tự nhiên thấp trong thực vật, và nó thường được điều chế bằng phương pháp thủy phân axit, thủy phân áp suất cao và các phương pháp khác trong công nghiệp. Các nghiên cứu đã sử dụng phương pháp sắc ký cột để tách đơn phân isoquercitrin ra khỏi dịch chiết thực vật. Tuy nhiên, do hàm lượng isoquercitrin tự nhiên trong cây trồng thấp nên phương pháp này không chỉ cho năng suất thấp mà còn phải thực hiện một khối lượng công việc lớn và tiêu tốn nhiều thuốc thử nên hạn chế phần lớn ứng dụng của nó trong thực tế công nghiệp.
Công nghệ sinh học như biến đổi vi sinh vật và biến đổi xúc tác bằng enzym, thực chất là một phản ứng trao đổi chất sử dụng các enzyme tự do hoặc enzym phức tạp để thay đổi cấu trúc của các hợp chất lạ. Nó có ưu điểm là điều kiện ôn hòa, tính chọn lọc mạnh, ít phụ phẩm, sạch và thân thiện với môi trường, giá thành rẻ. Tuy nhiên phương pháp này vẫn chưa đạt hiệu quả như mong đợi.
Hiện nay, phương pháp thủy phân bằng enzyme có ưu điểm là điều kiện phản ứng nhẹ, tính đặc hiệu mạnh, dễ kiểm soát phản ứng, khắc phục được những khuyết điểm của phương pháp điều chế isoquercitrin nêu trên. Wu Di và cộng sự đã sử dụng α-L-rhamnosidase do vi sinh vật tạo ra để biến đổi rutin, kết quả cho thấy hiệu suất của Isoquercitrin là 49,4% và độ tinh khiết của nó có thể đạt 98,3% sau khi tinh chế bằng sắc ký cột silica gel. Sun Guoxia và cộng sự đã sử dụng hesperidinase để thủy phân rutin điều chế isoquercitrin, và sử dụng chất lỏng ion để tăng sản lượng của isoquercitrin. Tỷ lệ chuyển hóa của sản phẩm cuối cùng đạt 99,27 ± 0,55%.

L-theanine là gì?
L-Theanine là một loại non-dietary amino acid tương tự của amino acid glutamine, thường tìm thấy trong nấm và trà xanh. Chúng đều là chất dẫn truyền thần kinh tạo thành từ glutamine (GABA và glutamate).
L-Theanine có thể xuyên qua lớp blood-brain barrier, lớp bảo vệ hệ thần kinh không bị tác nhân xấu tấn công. L-Theanine có thể tác động đến chức năng não, giúp tăng sản sinh sóng não vì vậy làm tăng cảm giác phấn chấn, giảm lo âu.
L-Theanin tác động đến khả năng dẫn truyền thần kinh não, tương tự hoạt chất Gaba, Dopamine, sự kết hợp L-Theanin với chất caffeine để cải thiện nhận thức, tâm trạng, khả năng tập trung, giảm căng thẳng, bảo vệ tim và não.
Điều chế sản xuất
Việc kiểm soát chặt chẽ các thông số Khi chiết xuất khâu kiểm soát chặt chẽ các thông số sẽ làm tăng khả năng tách đồng thời caffeine khỏi các thành phần trà khác. SFE đã được chứng minh là phương pháp tốt nhất cho quá trình khử caffein. Chiết xuất trong nước 80°C thời gian 30 phút, kích thước hạt trà 1mm, dung dịch pha ph < 6 và tỷ lệ trà trên nước ở mức 50 : 1 (ml/g) để chiết xuất tối đa và trà thành nước tỷ lệ 20 : 1 (ml/g) để tiết kiệm chi phí cùng với năng suất tối đa.

Phương pháp này không tránh khỏi mất catechin trong trà. Vẫn còn nhiều bằng sáng chế chứng minh hiệu quả của phương pháp khử caffein này vì quy trình thân thiện với người dùng, tiết kiệm năng lượng tiêu thụ và caffein có thể dễ dàng tách ra mà không cần các quá trình như đun nóng hoặc bay hơi.
Cơ chế hoạt động
L-Theanine có thể vượt qua được vách ngăn mạch máu não, tác động trực tiếp đến não, làm tăng Serotonin và Dopamine giúp hỗ trợ tăng cường trí nhớ.
L-Theanine cũng giúp làm tăng sự hoạt động của sóng não, tăng hiệu quả chất dẫn truyền, giúp mang lại giấc ngủ sâu hơn. L-Theanine còn làm tăng chất chống oxy hóa (Glutathione) giúp cơ thể tăng sức đề kháng, nếu kết hợp với caffeine giúp cải thiện nhận thức.
Lactic Acid là gì?
Lactic Acid hay Axit lactic hay axit sữa là một loại Alpha Hydroxyl Axit (AHA) - một dưỡng chất có thể tổng hợp trong tự nhiên. Mặt khác, Axit lactic còn được biết đến là một axit carboxylic với công thức hóa học C₃H₆O₃, được phân tách lần đầu tiên vào năm 1780 bởi nhà hóa học Thụy Điển Carl Wilhelm Scheele.
Công thức hóa học của Axit Lactic
Nhờ tính linh hoạt, Axit Lactic được ưa chuộng và ứng dụng khá nhiều trong đời sống của con người như trong công nghệ thực phẩm và làm đẹp. Đối với phái đẹp, Axit lactic được coi là “thần dược” sắc đẹp trong việc chăm sóc da nhờ khả năng thẩm thấu, len lỏi vào tận sâu vào các tế bào biểu bì. Khi được so sánh với Glycolic – một AHA khác cùng nhóm có khả năng thẩm thấu, Axit lactic được đánh giá cao hơn nhờ kết cấu là các phân tử siêu vi, hoạt chất nhẹ và làm da mềm mịm.
Đặc biệt nhờ đặc tính giữ nước cao, Axit lactic hạn chế sự mất nước của da khi sử dụng trực tiếp. Axit lactic được coi là sự lựa chọn khá an toàn với phái đẹp bởi khả năng tương thích trên nhiều loại da, đặc biệt là da khô và da nhạy cảm. Chuyên gia chăm sóc sắc đẹp Michele S. Green đến từ trường Đại học Yale University nhận định rằng Axit lactic có khả năng tái tạo cấu trúc da chỉ sau vài lần sử dụng, đặc biệt Axit lactic nồng độ khoảng 12% sẽ giúp tác động sâu xuống cả lớp biểu bì và hạ bì.
Axit lactic còn giúp tẩy đi lớp tế bào chết trên da nhưng không gây kích ứng cho làn da nhạy cảm, từ đó làm sáng da, giảm thâm, hỗ trợ cải thiện dấu hiệu lão hóa như nếp nhăn và làm da căng bóng.
Lactic Acid cải thiện dấu hiệu lão hóa, giảm nếp nhăn và làm căng da
Điều chế và sản xuất Lactic Acid
Sản xuất Lactic Acid từ lên men vi khuẩn
Nguyên liệu để sản xuất Lactic Acid có thể từ váng sữa hoặc sữa chua,... Tận dụng các loại vi khuẩn để tạo ra quá trình lên men từ các nguyên liệu trên có thể thu được L-Lactic - Hợp chất thường được ứng dụng trong ngành công nghiệp mỹ phẩm và làm đẹp da.
Sản xuất Lactic Acid từ quy trình tổng hợp chất
Quá trình sản xuất Lactic Acid từ các nguyên liệu thô như dầu, khí tự nhiên, than đá. Từ những nguyên liệu này, sẽ điều chế và thu được hoạt chất acetaldehyde.
Sau đó, hoạt chất acetaldehyde sẽ nhiệt phân để tạo ra lactonitrile. Cuối cùng, lactonitrile được thanh lọc và hydroxy hóa thành Acid Lactic. Thành phần Lactic Acid ở công đoạn này thường là hỗn hợp của dạng D- và L- ,được gọi là hỗn hợp Acid Lactic DL-.
Tuy nhiên, trong sản xuất mỹ phẩm, sản phẩm cần thiết cuối cùng là L-Lactic, do đó, sau khi thu được Acid Lactic DL- sẽ tiếp tục xúc tác phân giải đường để thu được sản phẩm như mong muốn.
Cơ chế hoạt động của Lactic Acid
Lactic Acid đóng vai trò là chất kích thích thúc đẩy quá phát triển của tế bào dưới lớp biểu bì da, từ đó thúc đẩy quá trình tái tạo collagen. Quá trình này thúc đẩy sự phát triển của tế bào mới dưới da đồng thời giúp giảm thiểu các nếp nhăn và làm da căng mịn.
Lactic Acid hoạt động linh hoạt và lướt nhẹ trên bề mặt da, giúp phá vỡ các liên kết của tế bào chết, tăng cường phát triển biểu bì và giữ ẩm cho da.
Lactic acid giúp kiểm soát dầu thừa trên da, ngăn ngừa tình trạng tắc lỗ chân lông và gây mụn, từ đó sẽ giúp cân bằng độ ẩm tự nhiên của da và không tạo cảm giác khô da khi sử dụng.
Lumiskin là gì?
Lumiskin hoạt động tốt thông qua các thụ thể đối kháng a-adrenergic và điều hòa dòng canxi. Lumiskin là một giải pháp của diacetyl-boldine và triglyceride caprylic/capric ức chế hoạt động của tyrosinase. Nó được sử dụng để làm sáng da. Sản phẩm này được khuyến khích sử dụng trong các sản phẩm làm sáng da. Lumiskin được khuyến khích sử dụng trong nhũ tương, xà phòng và các sản phẩm trang điểm có đặc tính làm sáng hoặc làm trắng da.
Lumiskin có đặc tính làm sáng hoặc làm trắng da
Điều chế sản xuất Lumiskin
Lumiskin là một giải pháp của diacetyl-boldine và triglyceride caprylic/capric ức chế hoạt động của tyrosinase.
Cơ chế hoạt động
Lumiskin hoạt động giống như bất kỳ sản phẩm làm sáng da nào khác. Về cơ bản, tác dụng của nó là khi bạn thoa nó lên phần da có vấn đề, nó sẽ loại bỏ các đốm đen. Nó sử dụng một thành phần hoạt chất được gọi là Diacetyl Boldine được biết là làm giảm tyrosinase. Điều này có thể chống lại tác hại của ánh nắng mặt trời cũng như các vấn đề liên quan đến tuổi tác.
Phân tử dẫn xuất thực vật ảnh hưởng đến quá trình hình thành hắc tố để giảm sự tổng hợp melanin và đốm nâu do tia UV gây ra.
Sodium Hyaluronate là gì?
Sodium hyaluronate hay còn gọi là Natri hyaluronate là muối natri của Acid hyaluronic, một Glycosaminoglycan được phân bố rộng rãi trong chất nền ngoại bào của các mô liên kết, biểu mô và thần kinh của động vật có vú cũng như nội mô giác mạc.

Sodium hyaluronate được biết như một chất giữ ẩm và làm lành vết thương. Chất này gồm các phân tử nhỏ thấm vào da dễ dàng, hoạt động bằng cách kéo độ ẩm từ môi trường và giữ nước trong lớp hạ bì. Khi tuổi tác càng lớn, da có xu hướng khô và có nhiều nếp nhăn do mất nước. Sử dụng các sản phẩm chăm sóc da có chứa Sodium hyaluronate giúp giữ ẩm cho da, mang lại cho bạn làn da mịn màng, tươi trẻ và giảm các dấu hiệu lão hóa.
Ngoài tác dụng với làn da, Sodium hyaluronate cũng có lợi cho sức khỏe khớp và mắt.
Điều chế sản xuất
Chiết xuất Sodium Hyaluronate tự nhiên có thể tìm thấy trong lúa mì, từ sự lên men của vi khuẩn, từ cuống rốn của động vật có vú, từ mào gà hoặc do tổng hợp.
Cơ chế hoạt động
Sodium hyaluronate hoạt động như một chất bôi trơn của mô và đóng vai trò quan trọng trong việc điều chỉnh các tương tác giữa các mô lân cận. Chất này tạo thành một dung dịch nhớt có tính đàn hồi trong nước để bảo vệ cơ cho mô (mống mắt, võng mạc) và các lớp tế bào (giác mạc, nội mô và biểu mô).
Tính đàn hồi của dung dịch giúp hấp thụ áp lực cơ học và cung cấp đệm bảo vệ cho mô. Để tạo thuận lợi cho việc chữa lành vết thương, Sodium hyaluronate hoạt động như một phương tiện vận chuyển và bảo vệ, đưa các yếu tố tăng trưởng peptide và các protein cấu trúc khác đến nơi chờ thực hiện. Sau đó, các enzyme bị phân hủy và hoạt tính protein được giải phóng để thúc đẩy quá trình sửa chữa mô.
L-valine là gì?
L-valine là đồng phân đối hình L của valine, hoạt chất có vai trò như một chất dinh dưỡng; vi chất dinh dưỡng; chất chuyển hóa tảo; chất chuyển hóa Saccharomyces cerevisiae; chất chuyển hóa ở người; chất chuyển hóa Escherichia coli và chất chuyển hóa của chuột. Vai trò của L-Valine là axit amin thiết yếu, có hoạt tính kích thích. Hoạt chất này thúc đẩy sửa chữa mô và phát triển cơ bắp. Thành phần này là một axit amin họ pyruvate có thể tạo protein, một valine và một axit amin L-alpha. Hoạt chất là một cơ sở liên hợp của một L-valinium, axit liên hợp của một L-valinat. Đồng thời L-valine cũng là một chất đồng phân đối quang của một D-valine, đồng phân của một zwitterion L-valine.
Điều chế sản xuất
Thủy phân protein, được tổng hợp bằng phản ứng của amoniac với axit alpha-chloroisovaleric. Các axit amin được kết hợp trong protein của động vật có vú là axit amin alpha, ngoại trừ proline, là axit alpha-imino. Điều này có nghĩa là chúng có một nhóm cacboxyl, một nhóm nitơ amin và một chuỗi bên được gắn với một cacbon alpha trung tâm.

Sự khác biệt về chức năng giữa các axit amin nằm trong cấu trúc của chuỗi bên của chúng. Ngoài sự khác biệt về kích thước, các nhóm phụ này mang điện tích khác nhau ở pH sinh lý (ví dụ, không phân cực, không tích điện nhưng có cực, tích điện âm, tích điện dương); một số nhóm kỵ nước (ví dụ, chuỗi phân nhánh và các axit amin thơm) và một số ưa nước (hầu hết các nhóm khác). Các chuỗi bên này có vai trò quan trọng đối với cách thức ổn định các bậc cao hơn của cấu trúc protein và là những bộ phận thân thiết của nhiều khía cạnh khác của chức năng protein.
Cơ chế hoạt động
L-valine được hấp thụ từ ruột non bằng quá trình vận chuyển tích cực phụ thuộc natri. Nồng độ trong máu và mô của các axit amin chuỗi nhánh (BCAA) bị thay đổi do một số bệnh và trạng thái sinh lý bất thường, bao gồm bệnh đái tháo đường, rối loạn chức năng gan, đói, suy dinh dưỡng protein-calo, nghiện rượu và béo phì. Những điều kiện này và các điều kiện khác đôi khi tạo ra những thay đổi mạnh mẽ trong các bể BCAA trong huyết tương.
Mặc dù các axit amin tự do hòa tan trong dịch cơ thể chỉ chiếm một tỷ lệ rất nhỏ trong tổng khối lượng axit amin của cơ thể, nhưng chúng rất quan trọng đối với việc kiểm soát dinh dưỡng và trao đổi chất của protein trong cơ thể... Mặc dù ngăn huyết tương dễ lấy mẫu nhất, nhưng nồng độ của hầu hết các axit amin cao hơn trong các bể nội bào của mô.
Thông thường, các axit amin trung tính lớn, chẳng hạn như leucine và phenylalanin, về cơ bản ở trạng thái cân bằng với huyết tương. Những thứ khác, đặc biệt là glutamine, axit glutamic và glycine, tập trung nhiều hơn từ 10-50 lần trong vùng nội bào. Sự thay đổi chế độ ăn uống hoặc tình trạng bệnh lý có thể dẫn đến những thay đổi đáng kể về nồng độ của các axit amin tự do riêng lẻ trong cả hồ huyết tương và mô.
Sau khi ăn vào, protein bị biến tính bởi axit trong dạ dày, nơi chúng cũng bị phân cắt thành các peptit nhỏ hơn bởi enzim pepsin, được kích hoạt bởi sự gia tăng axit trong dạ dày xảy ra khi cho ăn. Sau đó, protein và peptit sẽ đi vào ruột non, nơi các liên kết peptit bị thủy phân bởi nhiều loại enzym. Các enzym đặc hiệu liên kết này bắt nguồn từ tuyến tụy và bao gồm trypsin, chymotrypsins, elastase và carboxypeptidases.
Sau đó, hỗn hợp kết quả của các axit amin tự do và các peptit nhỏ được vận chuyển vào các tế bào niêm mạc bởi một số hệ thống chất mang đối với các axit amin cụ thể và đối với các di - và tri-peptit, mỗi loại cụ thể đối với một số cơ chất peptit giới hạn. Sau khi thủy phân nội bào của các peptit được hấp thụ, các axit amin tự do sau đó được tiết vào máu cổng bởi các hệ thống chất mang cụ thể khác trong tế bào niêm mạc hoặc tiếp tục được chuyển hóa trong chính tế bào. Các axit amin được hấp thụ sẽ đi vào gan, nơi một phần của các axit amin được tiếp nhận và sử dụng; phần còn lại đi vào hệ tuần hoàn và được sử dụng bởi các mô ngoại vi.
Sự tiết protein vào ruột vẫn tiếp tục ngay cả trong điều kiện cho ăn không có protein, và lượng nitơ mất đi trong phân (tức là nitơ bị mất khi vi khuẩn trong phân) có thể chiếm 25% lượng nitơ mất đi bắt buộc. Trong hoàn cảnh ăn kiêng này, các axit amin được tiết vào ruột dưới dạng thành phần của các enzym phân giải protein và từ các tế bào niêm mạc bong tróc là nguồn axit amin duy nhất để duy trì sinh khối vi khuẩn đường ruột... Các con đường mất axit amin nguyên vẹn khác là qua nước tiểu và qua da và rụng tóc. Những tổn thất này là nhỏ so với những tổn thất được mô tả ở trên, nhưng vẫn có thể có tác động đáng kể đến các ước tính về yêu cầu, đặc biệt là trong tình trạng dịch bệnh.
Methyl Methacrylate Crosspolymer là một loại polymer xốp được hình thành khi chất đồng trùng hợp của Metyl Metacrylat (một este hữu cơ) liên kết chéo với Glycol Dimethacrylat.

Nhờ có kích thước phân tử rất nhỏ mà Methyl Methacrylate Crosspolymer có khả năng giúp cho sản phẩm có kết cấu mướt mịn, giúp da được căng bóng. Bên cạnh đó, Methyl Methacrylate Crosspolymer còn có thể phân tán ánh sáng, từ đó làm mờ các nếp nhăn nông cũng như hút dầu thừa. Da nhờ công dụng này của Methyl Methacrylate Crosspolymer mà được mịn lỳ hơn.
Chúng ta đều biết, vitamin C là chất chống oxy hóa tự nhiên được tổng hợp từ glucose có ở hầu hết các loại thực vật và động vật. Đây là loại vitamin rất cần thiết cho sự tăng trưởng và phát triển của cơ thể. Vitamin C có thể giúp làm lành các mô bị tổn thương, tham gia vào quá trình sản xuất enzyme của một số chất dẫn truyền thần kinh; đồng thời còn có vai trò quan trọng đối với chức năng hệ thống miễn dịch.

Loại vitamin này được chúng ta bổ sung cho cơ thể thông qua những thực phẩm hàng ngày như trái cây họ cam quýt, rau lá xanh, bông cải xanh, dâu tây, đu đủ... Vitamin C dùng theo đường ăn uống sẽ hấp thu hạn chế ở trong ruột, nghĩa là cho dù bạn ăn bao nhiêu vitamin C thì cơ thể cũng chỉ hấp thụ một lượng hữu hạn mà thôi. Với da, khi dùng đường uống, sinh khả dụng của vitamin C trên da sẽ là không đủ. Do đó, cách tốt nhất là chúng ta sử dụng kết hợp, vừa qua đường ăn uống vừa dùng vitamin C bôi ngoài da để đạt được những hiệu quả tốt nhất cho da.
Vitamin C tồn tại dưới nhiều dạng khác nhau, trong đó Ascorbic Acid là dạng tự nhiên có hiệu quả nhất trong tất cả các dạng của vitamin C. Tuy nhiên, Ascorbic Acid lại là dạng vitamin C kém ổn định nhất, dễ bị oxy hóa bởi ánh sáng, nhiệt độ cũng như các ion kim loại. Magnesium Ascorbyl Phosphate (MAP) là một dẫn xuất khác của vitamin C với ưu điểm là khắc phục những hạn chế của Ascorbic Acid.
Magnesium Ascorbyl Phosphate có khả năng tan trong nước, độ pH trung tính nên không gây khó chịu, ít kích ứng da nên có thể dùng cho cả những làn da nhạy cảm. Đồng thời, hoạt chất này có tác dụng kích thích sinh tổng hợp collagen, chống lão hóa da, làm sáng da cụ thể và rõ rệt hơn hẳn các dẫn xuất khác. Đặc biệt, Magnesium Ascorbyl Phosphate có tính ổn định cao hơn nhiều lần so với Ascorbic Acid. Tuy nhiên, khả năng thẩm thấu của Magnesium Ascorbyl Phosphate không được tốt như Ascorbic Acid.
Đạm thủy phân từ men bia là gì?
Đạm thủy phân từ men bia có tên quốc tế là Protein hydrolyzates và có công thức phân tử là C29H29N3O3S. Đạm thủy phân từ men bia là chất thu được từ quá trình thủy phân axit, kiềm hoặc enzyme của saccharomyces cerevisiae, kết quả thu được bao gồm chủ yếu là axit amin, peptide và protein. Đạm thủy phân từ men bia có thể chứa các tạp chất chủ yếu là carbohydrate và lipid cùng với một lượng nhỏ các chất hữu cơ có nguồn gốc sinh học.

Điều chế sản xuất đạm thủy phân từ men bia
Thành phần và chất lượng của đạm men bia
Men bia được lên men để thu được sinh khối có giá trị tức có thể được sử dụng làm nguồn protein. Thông thường, hàm lượng protein của tế bào men bia có thể chiếm 40% - 60% trọng lượng khô. Dưới tác dụng của việc chuẩn bị hoặc chế biến thực phẩm, phần phi protein trong tế bào men bia được loại bỏ hoặc loại bỏ một phần, để có thể thu được các sản phẩm của protein men bia với số lượng lớn. Tóm lại, những protein men bia này chứa nhiều axit amin và cũng có một lượng nhỏ khoáng chất, lipid.
Sản xuất đạm men bia thủy phân
Việc sản xuất đạm men bia là một cách khả thi để giải quyết thách thức về sự gia tăng đáng kể nhu cầu protein trên toàn thế giới. Việc gia tăng sinh khối men bia và cô đặc protein bằng cách lên men chất thải nông nghiệp là một trong những phương pháp hiệu quả nhất để sản xuất protein men bia nhờ tỷ lệ tái sản xuất cao và hiệu suất cao.

Phương pháp xử lý dòng chảy thủy nhiệt liên tục được gọi là “thủy phân nhanh” đã được triển khai để thu hồi protein và xử lý nấm men. Thức ăn thừa chứa 1-15% trọng lượng men được thủy phân ở nhiệt độ từ 160 đến 280°C trong thời gian lưu rất ngắn 10 ± 2 giây. Sử dụng 10% trọng lượng men bia ở 240°C, 66.5% carbon, 70.4% nitơ và 61% sinh khối men bia tổng thể được hòa tan trong dịch thủy phân lỏng. Dịch thủy phân lỏng có 63.1% axit amin được phân tích trong thức ăn lên men được thử nghiệm làm chất dinh dưỡng để nuôi cấy vi khuẩn E. coli trong lò phản ứng sinh học. Nồng độ E. coli ở trạng thái ổn định lần lượt là 1,18 g/L và 0,93 g/l khi sử dụng dịch thủy phân lỏng và chiết xuất men bia thương mại. Từ đó có thể nghĩ rằng đạm thủy phân từ men bia có thể sử dụng cho quá trình phát triển của sinh vật.
Cơ chế hoạt động
Men bia là các vi sinh vật đơn bào được sử dụng chủ yếu trong dinh dưỡng vì tác dụng có lợi của chúng nhờ vào các thành phần tế bào và các hợp chất hoạt tính sinh học do chúng tạo ra, trong đó có mannan, β-glucans, nucleotides, mannan oligosacarides và các loại khác. Các tác dụng có lợi của đạm thủy phân từ men bia là khả năng điều chỉnh hệ vi sinh vật đường ruột, kích thích sự phát triển của vi khuẩn có lợi và giảm sự xâm nhập của mầm bệnh. Mặc dù việc sử dụng tế bào men bia sống làm chế phẩm sinh học trong thực phẩm chăn nuôi gia cầm đã được xem xét nhưng lại có ít thông tin về các sản phẩm có nguồn gốc từ men bia. Tuy nhiên, vẫn còn nhiều lĩnh vực cần được nghiên cứu để hiểu rõ hơn và tháo gỡ bí mật về những tác động cũng như cơ chế hoạt động của đạm men bia thủy phân.

Angiotensin II là gì?
Angiotensin là một hormone nội tiết peptide và là một phần quan trọng của hệ thống renin-angiotensin-aldosterone, một hệ thống nội tiết liên quan đến nhau, quan trọng trong việc kiểm soát thể tích và huyết áp. Angiotensinogen, một alpha-globulin và peptide prohormone được tổng hợp chủ yếu bởi gan và lưu thông trong huyết tương.
Angiotensin II (AT-II) gần đây đã nhận được sự chấp thuận của FDA để sử dụng cho bệnh nhân bị sốc. Hoạt động này xem xét các chỉ định, chống chỉ định, hoạt động, các tác dụng ngoại ý và các yếu tố chính khác của liệu pháp AT-II trong bối cảnh lâm sàng liên quan đến các điểm cần thiết mà các thành viên của một nhóm liên chuyên nghiệp quản lý chăm sóc bệnh nhân bị sốc.
Điều chế sản xuất Angiotensin II
Khi huyết áp giảm, hoặc khi tín hiệu giao cảm đến thận, renin, một peptit chủ yếu được sản xuất bởi các tế bào cầu thận, được giải phóng và phân cắt bằng enzym tạo thành hai axit amin tạo thành angiotensin I (ATI), một decapeptit. ATI tiếp tục được phân cắt thành một octapeptide, angiotensin II (ATII) bởi tác dụng của men chuyển (ACE), chủ yếu ở nội mô phổi, mặc dù enzyme này có trong nội mô của các cơ quan khác bao gồm cả tim.
Cơ chế hoạt động
ATII là một thuốc vận mạch mạnh, hoạt động trên các thụ thể nội mô mạch máu. Hai loại thụ thể ATII có ở tim và cơ trơn mạch máu, chịu trách nhiệm dẫn truyền tín hiệu làm trung gian hoạt động co mạch của ATII là thụ thể AT1 và AT2. Tín hiệu của chúng dẫn đến quá trình phosphoryl hóa myosin phụ thuộc canxi, dẫn đến co cơ trơn mạch máu. Sự co cơ trơn của động mạch này là nguyên nhân làm tăng huyết áp.
Ngoài ra, ATII tương tác với các thụ thể AT tại các vị trí khác nhau trong nephron để kích thích tái hấp thu natri. ATII cũng hoạt động trên zona cầu thận của vỏ thượng thận để kích thích giải phóng aldosterone, một hormone steroid hoạt động trên thận để thúc đẩy natri và giữ nước.
Cơ chế hoạt động cuả Angiotensin II
Betaine là gì?
Betaine là một amino acid - dẫn xuất của choline được tạo ra khi choline kết hợp với axit amin glycine, với cấu trúc hóa học có chứa 3 nhóm methyl bổ sung. Do vậy, betaine còn được gọi là trimethylglycine.
Betaine có một số chức năng sinh học quan trọng: Với chức năng là một phân tử nhường nhóm methyl, betaine tham gia vào quá trình methyl hóa (quá trình sinh hóa thiết yếu) hỗ trợ chức năng của gan, giải độc và hoạt động của tế bào trong cơ thể.

Tuy nhiên, vai trò quan trọng nhất của betaine là hỗ trợ cơ thể xử lý chất béo. Betaine cũng là một chất chống thẩm thấu thiết yếu chủ yếu ở thận, gan và não. Một lượng lớn betaine có thể tích lũy trong các tế bào mà không làm gián đoạn chức năng của tế bào, giúp bảo vệ các tế bào, protein và enzyme dưới áp lực thẩm thấu.
Trong sản xuất mỹ phẩm, betaine tương thích tốt với da, giúp làm giảm kích ứng gây ra do chất diện hoạt và tạo cảm giác mềm mại khi sử dụng. Theo một nghiên cứu được tiến hành trên 22 tình nguyện viên tại Thái Lan, 100% người tham gia nhận thấy màu da sáng hơn sau khi sử dụng dung dịch betaine 4%.
Điều chế sản xuất Betaine
Vào thế kỷ 19, người ta đã phát hiện ra betaine là một chất tự nhiên có trong củ cải đường (Beta Vulgaris). Trong một số thực phẩm như cám lúa mì, mầm lúa mì, rau bina, vi sinh vật và động vật không xương sống dưới nước, betaine cũng được tìm thấy ở nồng độ cao hơn.

Chúng ta có thể bổ sung betaine thông qua chế độ ăn uống. Ngoài ra, trong cơ thể, betaine được tổng hợp bởi sự kết hợp của choline và axit amin glycine.
Cơ chế hoạt động của Betaine
Betaine hình thành liên kết hydro với nước và những phân tử khác một cách dễ dàng nhờ vào đặc điểm về cấu trúc. Chất này có thể tan trong nước tạo dung dịch 55% bền vững về mặt hóa học.
Nhờ có betaine mà homocysteine trong máu được chuyển đổi thành methione. Điều này rất quan trọng, hàm lượng homocysteine ở mức cao sẽ ảnh hưởng xấu đến mạch máu, từ đó dễ dẫn đến sự phát triển các mảng bám và tình trạng gọi là xơ vữa động mạch (tắc nghẽn động mạch).
Ngoài ra, hàm lượng homocysteine cao cũng là một trong những nguyên nhân chính gây ra bệnh tim, đột quỵ cũng như các bệnh tim mạch khác. Betaine có khả năng hạ thấp homocysteine, tăng cường cơ và sức mạnh của sợi cơ, tăng cường độ chịu đựng và giúp giảm béo.
Sản phẩm liên quan









