Insulin Pork
Phân loại:
Thành phần khác
Mô tả:
Insulin Pork là gì?
Insulin là hormone từ các tế bào đảo tụy ở tuyến tụy tiết ra. Insulin được tạo ra bằng cách phân lập tuyến tụy của động vật như bò và lợn từ những năm 1920-1980. Insulin người và lợn có sự khác biệt trong thành phần amino acid. Khi dùng insulin có nguồn gốc từ lợn đã gây ra một số tác dụng phụ. Quá trình sản xuất và làm tinh khiết insulin giai đoạn đó còn gặp nhiều khó khăn.
Công ty Genetech (Hoa Kỳ) đã sản xuất insulin bằng kỹ thuật di truyền đầu tiên vào năm 1982. Đây là lần đầu tiên các nhà nghiên cứu ứng dụng công nghệ sinh học vào dược phẩm thành công và sản phẩm được đưa ra thị trường.
Insulin chuyển hóa các chất carbohydrate trong cơ thể, insulin tác dụng đến việc chuyển hóa gan và các mô mỡ thành năng lượng ATP cung cấp cho hoạt động cơ thể. Insulin tổng hợp ở tế bào beta trong đảo tụy từ bộ máy tổng hợp protein trong tế bào, và có thể làm giảm nồng độ glucose trong máu.
Điều chế sản xuất
Các nhà nghiên cứu lần đầu tiên đã ứng dụng công nghệ sinh học vào dược phẩm thành công là năm 1982. Sản phẩm insulin là của Công ty Genetech được sản xuất bằng kỹ thuật di truyền đầu tiên.
Người ta dùng kỹ thuật tái tổ hợp AND chuyển gen mã hóa insulin vào tế bào vi khuẩn, E.coli sẽ sinh tổng hợp tạo ra loại peptit khi được nuôi cấy trong môi trường thích hợp.
Sản xuất theo quy trình sau: Cần chuẩn bị đoạn oligonucleotide mã hóa cho insulin: Theo trình tự cấu trúc các amino acid của insulin, có 2 chuỗi polypeptid A và B nối với nhau bằng hai cầu disulfur và 51 amino acid. Người ta đã mã hoá cho hai chuỗi A, B và tạo dòng gen tách biệt.
Phương pháp dùng plasmid của vi khuẩn hay nấm men, bằng enzyme hạn chế cắt plasmid. Nối đoạn gen mã hóa cho insulin tạo vector tái tổ hợp (pBR322), chuyển vector pBR322 vào vi khuẩn E.coli.
Vi khuẩn E.coli được lên men ở môi trường phù hợp, tách chiết thu được sản phẩm là polypeptid A và B. Trộn hai loại peptid bằng phương pháp hóa học enzym để xử lý để tạo cầu disulfur.
Cơ chế hoạt động
Insulin cần được gắn vào tế bào đích thông qua thụ cảm thể (receptor) của insulin trên bề mặt tế bào để phát huy tác dụng.
Dược động học:
Dược lực học:
Xem thêm
Cinnamaldehyde là gì?
Cinnamaldehyde còn được gọi là Aldehyde cinnamic; 3-phenyl-2-propan; Anđehit cinnamyl; Phenylalacrolein; quế chi và trans-cinnamaldehyde. Đây là thành phần có trong vỏ của cây quế (Cinnamomum zeylanicum), xuất xứ từ Sri Lanka và Ấn Độ và được trồng ở Brazil, Jamaica và Mauritius. Cinnamaldehyde cũng được tìm thấy trong các thành viên khác của loài Cinnamomum bao gồm cả cây cassia và long não.
Có công thức hóa học là C6H5CH = CHCHO, Cinnamaldehyde là một hợp chất hữu cơ xuất hiện tự nhiên chủ yếu là đồng phân trans (E), mang lại hương vị và mùi cho quế.
Đây là một Phenylpropanoid được tổng hợp tự nhiên bằng con đường sinh tổng hợp Shikimat, tồn tại dưới dạng chất lỏng nhớt, màu vàng nhạt. Tinh dầu của vỏ quế chứa khoảng 90% là Cinnamaldehyde.
Công thức phân tử của Cinnamaldehyde được xác định vào năm 1834 bởi các nhà hóa học người Pháp Jean Baptiste André Dumas (1800–1884) và Eugène Melchior Péligot (1811–1890) và mặc dù công thức cấu trúc của nó chỉ được giải mã vào năm 1866 bởi nhà hóa học người Đức Emil Erlenmeyer (1825– Năm 1909).
Điều chế sản xuất
Có nhiều cách để điều chế Cinnamaldehyde. Thành phần này được điều chế thương mại bằng cách xử lý vỏ cây Cinnamomum zeylanicum với hơi nước. Anđehit hòa tan trong hơi nước, sau đó Cinnamaldehyde được chiết xuất khi hơi nước nguội đi và ngưng tụ lại để tạo thành nước lạnh, trong đó hợp chất ít hòa tan hơn nhiều.
Cinnamaldehyde cũng có thể được tổng hợp bằng cách cho phản ứng giữa Benzaldehyde (C6H5CHO) với Acetaldehyde (CH3CHO). Hai hợp chất ngưng tụ sau khi loại bỏ nước để tạo thành Cinnamaldhyde.
Năm 1834, Cinnamaldehyde được phân lập từ tinh dầu quế bởi Jean-Baptiste Dumas và Eugène-Melchior Péligot và được nhà hóa học người Ý Luigi Chiozza tổng hợp trong phòng thí nghiệm vào năm 1854.
Tinh dầu quế được chiết xuất từ vỏ cây quế với thành phần chính là Cinnamaldehyde. Có hai cách để chiết xuất được tinh dầu quế từ vỏ quế: Đó là công nghệ chưng cất hơi nước và chiết xuất qua dung môi. Nhưng để đạt thành phần Cinnamaldehyde lên đến 90% thì phải sử dụng công nghệ chưng cất hơi nước, còn với công nghệ chiết xuất qua dung môi chỉ đạt được 62 % đến 73 % tỉ lệ Cinnamaldehyde.
Cơ chế hoạt động
Nhiều dẫn xuất của Cinnamaldehyde có ích về mặt thương mại. Rượu Dihydrocinnamyl, xuất hiện tự nhiên nhưng được sản xuất bằng cách hydro hóa gấp đôi Cinnamaldehyd, được sử dụng để tạo ra mùi thơm của lục bình và hoa cà. Rượu Cinnamyl cũng tương tự và có mùi của hoa cà, có thể được sản xuất bắt đầu từ Cinnamaldehyd. Dihydrocinnamaldehyd được tạo ra bởi quá trình hydro hóa chọn lọc của tiểu đơn vị kiềm.
Glycol Distearate là gì?
Glycol Distearate là một diester, sản phẩm kết hợp giữa ethylen glycol và acid stearic. Hóa chất này có màu trắng, mùi tự nhiên không tan trong nước, phân tán trong nước và dầu, có chỉ số HLB là 5-6.
Trong công thức mỹ phẩm, Glycol Distearate có khả năng tạo bọt nên thường được dùng sản xuất dầu gội, xà phòng, nước rửa tay, sữa tắm… Glycol Distearate đã được kiểm định và chấp thuận bởi CIR vì khả năng thích ứng và nhạy cảm với da rất thấp.
Điều chế sản xuất Glycol Distearate
Glycol Distearate có thể được tìm thấy từ nguồn động vật hoặc các nguồn thực vật như dầu đậu nành, dầu colano. Hóa chất này cũng có thể được sản xuất tổng hợp từ quá trình diester giữa axit stearic acid béo. Glycol Distearate là diester của ethylene glycol và stearic acid.
Glucose trong mỹ phẩm là gì?
Glucose (hay tên gọi Glucose D trong mỹ phẩm) là nguyên liệu tự nhiên được tạo thành từ ngô (bắp). Chính vì thế, thành phần này rất an toàn, lành tính, được các nhà sản xuất ưu ái đưa vào sản phẩm mà không lo ngại sẽ gây ra các phản ứng nhạy cảm đối với làn da.
Glucose D tồn tại dưới dạng chất lỏng nhớt, có màu vàng nhạt, được sử dụng trong các sản phẩm dịu nhẹ, mục đích làm giảm kích ứng da do các chất làm sạch.
Trong gia công mỹ phẩm, các nhà sản xuất bổ sung thành phần glucose D để gia tăng độ hiệu quả cho các sản phẩm chăm sóc tóc và da. Glucose D có độ hoạt động từ khoảng 70-80%, phần còn lại là nước. Khi ở nhiệt độ lạnh, thành phần này có thể trở nên đông cứng, cũng có thể dày như gel. Do đặc tính dễ dàng đưa vào sản phẩm, kể cả quy trình lạnh mà không phải thực hiện công đoạn gia nhiệt hay điều chỉnh độ pH nên glucose D rất được ưa chuộng có mặt trong công thức mỹ phẩm, điển hình như sữa rửa mặt cho làn da nhạy cảm, các loại sữa tắm chăm sóc cơ thể cho trẻ em, dầu gội đầu…
Điều chế sản xuất
Glucose được tạo ra bởi thực vật như một trong những sản phẩm chính của quá trình quang hợp. Glucose có sẵn ở các dạng như dạng chất màu trắng, tinh thể rắn, dung dịch nước.
Dẫn xuất glucose tự nhiên được làm dưới dạng polyethylene glycol của methyl glucose, dùng phổ biến trong những sản phẩm làm đẹp và mỹ phẩm như một chất hoạt động bề mặt hoặc nhũ hóa.
Axit stearic là gì?
Axit Stearic là acid béo bão hòa gồm một chuỗi 18 cacbon, có công thức hóa học CH3-(CH2)16-COOH và có tên IUPAC là acid octadecanoic.
Axit stearic là một axit béo no, chuỗi dài được tìm thấy trong các chất béo động vật và thực vật khác nhau. Về cơ bản, hoạt chất này như một chất béo dưỡng ẩm. Đây là một thành phần tự nhiên, cụ thể là bơ ca cao và bơ hạt mỡ có trong một số thành phần của kem dưỡng ẩm da.
Thành phần này được làm chất phụ gia để sản xuất rất nhiều sản phẩm chăm sóc tóc, da cũng như một số chất tẩy rửa gia dụng.
Axit Stearic có màu trắng tới hơi vàng ở thể rắn với 2 dạng đó là tinh thể và dạng bột. Hoạt chất này có khối lượng phân tử: 284,48 (g/mol), điểm tan chảy 69,4 độ C và điểm phân hủy là 350 độ C.
Điều chế sản xuất Axit stearic
Quá trình chưng cất các chất béo và các loại mỡ thực vật với nước ở áp suất cao và nhiệt độ trên 200 độ C dẫn đến quá trình thủy phân được tạo thành axit stearic. Thành phần axit stearic thường là hỗn hợp giữa panmitic và axit stearic. Axit stearic còn được sản xuất bằng phương pháp khác. Từ tinh bột thông qua hydro hóa các axit béo không no có ở dầu thực vật và tổng hợp thông qua acetyl-CoA để được axit stearic.
Cơ chế hoạt động của Axit stearic
Một số nghiên cứu đã xác định cơ chế axit stearic (18:0) ức chế chọn lọc các phản ứng miễn dịch phụ thuộc vào tế bào T trong ống nghiệm. Trong quá trình ủ các tế bào B và T được kích hoạt bằng mitogen với tỷ lệ 18: 0 dẫn đến các kiểu kết hợp axit béo bão hòa khác nhau vào màng của chúng. Các phân tích sắc ký lỏng hiệu suất cao (HPLC) của tế bào T cho thấy sự tích tụ của phosphatidylcholine (PC) có chứa phosphatidylcholine (PC) 18:0 không bão hòa đã thay thế PC tế bào bình thường.
Một số ít PC được tìm thấy tích tụ trong màng tế bào B làm tăng tỷ lệ PC chứa axit oleic (18:1). Các thành phần lipid khác nhau của màng tế bào lymphocyte sau khi tiếp xúc với tỷ lệ 18:0 có tương quan với điện thế màng sinh chất của chúng.
Trong các tế bào T, sự tích tụ không bão hòa, PC chứa 18:0 trùng hợp với sự phá vỡ nhanh chóng tính toàn vẹn của màng, được xác định bằng phương pháp đo tế bào dòng chảy. Sự phá vỡ tính toàn vẹn của màng được phát hiện phụ thuộc vào thời gian và liều lượng. Nghiên cứu không quan sát thấy có sự khử cực nào như vậy trong các tế bào B, nhờ khả năng khử bão hòa, có thể tránh kết hợp một lượng lớn các phospholipid có chứa 18:0 không bão hòa vào màng của chúng.
Người ta cho rằng sự thiếu hụt stearoyl-CoA desaturase trong tế bào T sẽ ngăn chúng khỏi quá trình khử bão hòa có nguồn gốc ngoại sinh 18:0, do đó dẫn đến tăng tỷ lệ PC không bão hòa có chứa 18: 0 trong màng tế bào của chúng. Sự phong phú của loài PC này có thể tăng cường độ cứng của màng sinh chất bị suy giảm đáng kể.
Ascorbyl Tetraisopalmitate là gì?
Ascorbyl tetraisopalmitate (ATIP hoặc VC-IP có thương hiệu) là tetraester của axit ascorbic và axit isopalmitic. nó là một dẫn xuất vitamin C tan trong dầu, ổn định, đã được chứng minh lâm sàng, cung cấp khả năng hấp thụ qua da vượt trội và chuyển đổi hiệu quả thành vitamin C tự do trong da.
Thành phần đa chức năng này ức chế hoạt động của tyrosinase nội bào và tạo hắc tố để làm sáng, giảm tổn thương tế bào + DNA do tia UV gây ra, cung cấp chức năng chống oxy hóa mạnh và tăng cường tổng hợp collagen.Cấu trúc hóa học của Ascorbyl tetraisopalmitate có các cánh tay uốn cong tăng tính thấm qua da. Nó cho thấy hiệu quả ấn tượng ngay cả ở mức sử dụng thấp.

Ascorbyl Tetraisopalmitate là một dạng Vitamin C
Điều chế sản xuất Ascorbyl Tetraisopalmitate
Ascorbyl Tetraisopalmitate là dạng Vitamin C mới nhất, được tạo ra bằng cách trộn Vitamin C với Axit Isopalmitic.
Cơ chế hoạt động
Ascorbyl tetraisopalmitate là một dẫn xuất tan trong dầu, vì vậy nó thẩm thấu vào da nhanh hơn nhiều so với các dạng khác.
Giống như các dạng khác của Vitamin C, nó giúp ngăn ngừa lão hóa tế bào bằng cách ức chế liên kết chéo của collagen, quá trình oxy hóa protein và quá trình peroxy hóa lipid. Nó cũng hoạt động hiệp đồng với Vitamin E chống oxy hóa, và đã chứng minh sự ổn định và hấp thụ qua da vượt trội.
Không giống như axit L-Ascorbic, Ascorbyl Tetraisopalmitate sẽ không tẩy tế bào chết hoặc gây kích ứng da. Nó được dung nạp tốt bởi ngay cả những loại da nhạy cảm nhất. Ascorbyl tetraisopalmitate tồn tại trong tế bào da lâu hơn axit l-ascorbic từ bốn mươi đến tám mươi lần và sẽ có tác dụng gấp bốn lần.Cho phép hấp thụ qua da nhanh hơn các dạng khác của vitamin C3 — tế bào hấp thụ nồng độ ATIP gấp 10 lần so với axit l-ascorbic.
Ferulic Acid là gì?
Trong các sản phẩm chống lão hóa da, Ferulic Acid là hoạt chất thường thấy với hiệu quả không thua kém Retinol.
Thuộc gốc acid hydroxycinnamic và có nguồn gốc từ thực vật, Ferulic Acid được tìm thấy tự nhiên trong lá và hạt của hầu hết các loại thực vật, đặc biệt có rất nhiều trong phần cám của các loại hạt như gạo, lúa mì và yến mạch.
Ferulic Acid có khả năng làm chậm quá trình lão hóa nên hoạt chất này có mặt phổ biến trong mỹ phẩm chăm sóc da. Ngoài ra, nhờ khả năng kháng khuẩn, chống viêm và chống oxy hóa nên các nhà sản xuất cũng bổ sung Ferulic Acid vào trong các sản phẩm trị mụn và chống lão hóa da.
Ferulic Acid có khả năng chống lại các gốc tự do, hiệu quả vượt trội làm chậm lại quá trình oxy hóa. Ferulic Acid còn giúp ổn định và tăng hiệu quả hoạt động của các hoạt chất chống oxy hóa khác. Đó là những ưu điểm tuyệt vời mà Ferulic Acid mang lại cho quá trình chăm sóc, bảo vệ làn da.
Điều chế sản xuất Ferulic Acid
Ferulich Acid là một dẫn xuất acid hydroxycinnamic. Loại acid này thu được từ phương pháp thủy phân.
Cơ chế hoạt động của Ferulic Acid
Là chất chống oxy hóa nên Ferulic Acid có thể ức chế các enzyme tạo ra gốc tự do. Những gốc tự do này chính là nguyên nhân chủ yếu khiến da mất dần độ đàn hồi và săn chắc, đồng thời còn làm hình thành nếp nhăn. Đặc tính của Ferulic Acid sẽ giúp giải quyết vấn đề lão hóa da một cách hiệu quả.
Euglena Gracilis Polysaccharide là gì?
Euglena gracilis là một loại eukaryote đơn bào thuộc bộ Euglena của Euglenophyta. Polysaccharide dự trữ của Euglena gracilis là một polysaccharide dính không chứa tinh bột được liên kết bởi các liên kết β-1,3 glycosidic, thường được gọi là paramylon.

Euglena Gracilis dưới kính hiển vi
Trong điều kiện dị dưỡng, sự tích tụ Euglena gracilis paramylon (EGP) có thể đạt 50 ~ 70% trọng lượng khô của tế bào. Mặc dù EGP là một carbohydrate dự trữ trong tế bào Euglena gracilis, cấu trúc của nó khác với các polysaccharide β-1,3-glucan khác, có nhiều hoặc ít chuỗi phân nhánh, trong khi EGP là một polysaccharide tuyến tính chặt chẽ với độ kết tinh cao ở trạng thái tự nhiên. EGP đã thu hút được nhiều sự chú ý do các hoạt tính sinh học khác nhau của nó, bao gồm loại bỏ kim loại nặng, cân bằng môi trường ruột, tác dụng bảo vệ gan và tác dụng kháng virus và kích thích miễn dịch.
Điều chế sản xuất
Paramylon từ Euglena gracilis (EGP) là một polysaccharide cao phân tử bao gồm β-1,3 glucan mạch thẳng. EGP đã được chứng minh là có hoạt tính kháng khuẩn, nhưng tác dụng của nó yếu do không hòa tan trong nước và độ kết tinh cao.
Cơ chế hoạt động
Các nghiên cứu đã chứng minh rằng Euglena Gracilis Polysaccharide được tạo âm và kiềm hóa có thể kích thích và làm tăng đáng kể các yếu tố liên quan đến tế bào miễn dịch trong tế bào lympho ở người.
Diethyltoluamide là gì?
Diethyltoluamide lần đầu tiên được đăng ký để sử dụng bởi công chúng vào năm 1957, và được sử dụng rộng rãi ở Hoa Kỳ. Hiện nay, có hơn 225 sản phẩm chống côn trùng thương mại có chứa Diethyltoluamide.
Diethyltoluamide là một chất lỏng gần như không màu, có mùi và là thành phần hoạt tính trong nhiều sản phẩm chống côn trùng.
Tên hóa học của Diethyltoluamide là N, N-diethyl-m-toluamide, công thức hóa học: C12H17NO. Nó là một thành viên của họ hóa chất N, N-dialkylamide. Công thức thực nghiệm của Diethyltoluamide là C12H17NO, và khối lượng phân tử là 191,26g/mol.

Công thức hóa học của Diethyltoluamide là C12H17NO
Nó rất dễ hòa tan trong etanol và isopropanol, là những dung môi phổ biến trong các công thức chống thấm có chứa Diethyltoluamide.
Điều chế sản xuất
Hãy đóng kín công ten nơ khi không sử dụng. Lưu trữ trong bao bì kín. Bảo quản ở nơi khô ráo, thoáng mát, tránh xa các chất không tương thích.
Cơ chế hoạt động
Cơ chế xua đuổi của Diethyltoluamide vẫn là một chủ đề của cuộc điều tra đang diễn ra. Một số nghiên cứu cho rằng Diethyltoluamide hoạt động bằng cách hình thành một rào cản hơi có mùi và vị khó chịu đối với côn trùng.
Một nghiên cứu thường xuyên được trích dẫn đã kết luận rằng côn trùng bị hấp dẫn bởi axit lactic trên da người và hơi từ Diethyltoluamide cản trở khả năng xác định vị trí axit lactic của chúng.
Các nghiên cứu khác đã thách thức lời giải thích này, tìm ra tác dụng xua đuổi của Diethyltoluamide chỉ với carbon dioxide là chất dẫn dụ. Một nghiên cứu gần đây hơn đã cung cấp các bằng chứng về hành vi và các bằng chứng khác chứng minh rằng hiệu quả đuổi muỗi là kết quả của việc muỗi phát hiện và tránh trực tiếp Diethyltoluamide.
Diosmetin là gì?
Trong trái cây thuộc họ cam quýt có hoạt chất Diosmetin là một flavone O-methyl hóa. Hoạt chất này cũng là phần aglycone của flavonoid glycosides diosmin. Diosmetin về mặt dược lý có báo cáo cho là có các hoạt động chống oxy hóa, chống ung thư, kháng khuẩn và có thể chống viêm nhiễm. Diosmetin có tên hóa học là 3 ', 5,7-trihydroxy-4'-methoxyflavone, hoạt chất hoạt động như một chất chủ vận thụ thể TrkB yếu. Thành phần này là bột màu vàng, có thể tan chảy ở nhiệt độ 256 ~ 258℃ và có công thức phân tử là C16H12O6.
Từ những năm 1920, một số nghiên cứu về diosmetin bắt đầu sau khi diosmin được phân lập từ cây sung. Vào năm 1969, diosmin được giới thiệu như một loại thuốc. Sau đó có một số nghiên cứu chỉ ra rằng flavone glycoside này có thể giúp điều trị các bệnh mạch máu. Mối quan tâm lớn về tiềm năng điều trị của loại thuốc này hiện nay, như là một phương pháp điều trị thay thế cho một số bệnh ung thư.
Điều chế sản xuất Diosmetin
Diosmetin được điều chế từ diosmin, hoạt chất được phân lập từ những nguồn thực vật khác nhau ở những trái cây họ cam quýt.
Cơ chế hoạt động của Diosmetin
Diosmetin được chuyển hóa thành flavone luteolin có cấu trúc tương tự trong tế bào MDA-MB 468, trong khi không thấy chuyển hóa trong tế bào MCF-10A.
Diosmetin có các chất chuyển hóa ở người đã biết bao gồm (2S, 3S, 4S, 5R) -3,4,5-Trihydroxy-6- [5-hydroxy-2- (3-hydroxy-4-methoxyphenyl) -4-oxochromen-7- yl] axit oxyoxan-2-cacboxylic.
Nhiều loại khối u khác nhau được biết đến là do các enzym biểu hiện quá mức thuộc họ CYP1 của tế bào sắc tố P450. Trong nghiên cứu mô tả sự chuyển hóa, hoạt động chống tăng sinh của flavonoid diosmetin tự nhiên trong dòng tế bào u gan người biểu hiện CYP1, HepG2. Diosmetin được chuyển đổi thành luteolin trong tế bào HepG2 sau 12 và 30 giờ ủ. Khi có mặt chất ức chế CYP1A alpha-naphthoflavone, việc chuyển đổi diosmetin thành luteolin bị giảm độc lực. Thử nghiệm 3- (4,5-Dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide cho thấy luteolin độc tế bào hơn diosmetin.
Tác dụng chống tăng sinh của diosmetin trong tế bào HepG2 được cho là do sự tắc nghẽn ở pha G2/M được xác định bằng phương pháp đo tế bào dòng chảy. Cảm ứng bắt giữ G2/M đi kèm với sự điều hòa lên của kinase điều hòa tín hiệu ngoại bào (p-ERK), phospho-c-jun N-terminal kinase, p53 và p21. Quan trọng hơn, cảm ứng bắt giữ G2 / M và điều hòa tăng p53 và p-ERK đã bị đảo ngược khi áp dụng chất ức chế CYP1 alpha-naphthoflavone. Kết hợp với nhau, dữ liệu cung cấp bằng chứng mới về vai trò ức chế khối u của enzym cytochrom P450 CYP1A và mở rộng giả thuyết rằng hoạt động chống ung thư của flavonoid trong chế độ ăn được tăng cường nhờ kích hoạt P450.
Geraniol được biết đến là loại rượu terpene có nguồn gốc tự nhiên. Terpene là nhóm các loại hợp chất hữu cơ từ thực vật, thường có mặt trong các loại tinh dầu của một số loại cây có hương thơm.
Geraniol có mùi thơm rất mạnh, trong tự nhiên mùi này được tỏa ra mục đích bảo vệ thực vật khỏi những động vật ăn cỏ và thu hút lại các động vật ăn thịt cùng với ký sinh trùng từ động vật ăn cỏ.
Trong ngành mỹ phẩm và các sản phẩm chăm sóc da, các nhà sản xuất thường bổ sung thành phần geraniol vào công thức sản phẩm để tạo mùi thơm. Trong các loại tinh dầu hoa hồng, dầu sả hoa hồng palmarosa, dầu sả java, chúng ta có thể tìm thấy geraniol là thành phần chính, chiếm tỷ lệ chủ yếu.
Ngoài ra, geraniol trong tinh dầu của cây phong lữ, chanh và các tinh dầu thực vật khác cũng góp một lượng nhỏ. Chưa kể, các tuyến hương bên trong mật ong cũng tạo ra để làm dấu cho các hoa mang mật hoa.
Được sản xuất chủ yếu ở dạng dầu không màu và vàng nhạt, geraniol không hòa tan trong nước tuy nhiên thành phần này lại hòa tan trong các dung môi hữu cơ.
Ascorbyl Glucoside là gì?
Ascorbyl Glucoside (vitamin C gốc đường) là một dẫn xuất của vitamin C. Ascorbyl Glucoside có độ pH từ 5-7. Khác với tác dụng trực tiếp khi lên da của các gốc C khác như LAA, EAA, MAP, SAP… Ascorbyl Glucoside sau khi lên da sẽ trải qua một quá trình hấp thụ và chuyển đổi thì mới mang lại những hiệu quả rõ rệt cho da.
Cụ thể, sau khi Ascorbyl Glucoside được hấp thụ vào da, một loại Enzyme được gọi là Alpha-Glucosidas sẽ phân hủy nó thành LAA (L – Ascorbic Acid). Quá trình này sẽ giúp da nhận được những hiệu quả của vitamin C như làm sáng da, chống oxy hóa, mờ thâm, làm mờ nếp nhăn... Và đồng thời hạn chế được tối đa các khả năng kích ứng so với khi bôi trực tiếp gốc L-AA lên da.
Người dùng sử dụng vitamin C gốc LAA thường hay gặp phải tình trạng khó hấp thụ, vitamin C bị oxy hóa ngay trên bề mặt da và khiến da bị vàng sạm. Những ai gặp trường hợp này khi sử dụng LAA thì có thể tham khảo sang gốc Ascorbyl Glucoside (Vitamin C gốc đường). Vì gốc này ổn định với ánh sáng hơn rất nhiều, cũng như độ hấp thụ và thẩm thấu tốt hơn hẳn.
Vì phải trải qua một giai đoạn chuyển hóa nên nhìn chung Ascorbyl Glucoside sẽ có hiệu quả chậm hơn so với vitamin C gốc LAA. Tuy nhiên, đây sẽ là một giải pháp an toàn, dài lâu, và cũng như đảm bảo sản phẩm đang dùng không bị oxy hóa giữa chừng. Thêm một điểm nhỏ nữa thì bảo quản Vitamin C gốc LAA khó cực kỳ, bạn phải để tránh ánh sáng trực tiếp, thường xuyên kiểm tra màu sản phẩm, nếu nó bị vàng ngà đi thì tinh chất đã bị oxy hóa và không thể sử dụng được nữa. Vitamin C gốc LAA tốt nhất nên được bảo quản ở tủ lạnh. Ngược lại, các sản phẩm chứa Ascorbyl Glucoside thì chỉ cần để ở nhiệt độ phòng và không cần lo ngại đến khả năng sản phẩm bị oxy hóa.
Vì sẽ chuyển hóa thành LAA sau khi lên da nên Ascorbyl vẫn duy trì những hiệu quả tốt của vitamin C đối với da. Nổi bật là các hiệu quả như chống oxy hóa, làm sáng da, giảm thâm, tăng độ đàn hồi, thúc đẩy hình thành và tái tạo Collagen trên da. Ưu điểm lớn của Ascorbyl Glucoside là thẩm thấu tốt, ít gây kích ứng trên da và hầu như sản phẩm không bị oxy hóa ngay cả khi bảo quản ở môi trường nhiệt độ phòng.
Điều chế sản xuất Ascorbyl Glucoside
Sản xuất công nghiệp của Ascorbyl Glucoside chủ yếu bao gồm việc chuẩn bị, tinh chế, kết tinh của ba quy trình chính.
Hiện nay, quá trình chuyển đổi sinh học là cách duy nhất để tổng hợp glucoside ascorbic acid, tức là sử dụng glucoside trên glucosyl donor được chuyển đến vị trí C 2 của vitamin C bằng cách sử dụng transglycosylation cụ thể của glycosyltransferase.
Trong phản ứng này, các độ dài khác nhau của các nhóm glucosyl có thể được gắn với vị trí C 2 của vitamin C để sản xuất một hỗn hợp AA-2Gn (n = 1,2,3,4,5-C có thể chuyển thành Ascorbyl Glucoside bằng cách bổ sung một glucoamylase để giảm mức độ trùng hợp.
Ngoài ra, các đồng phân AA-5G, AA-6G và các AA-2G khác có xu hướng hình thành trong phản ứng glycosyltransferase, và các nhà tài trợ vitamin C và glucose vẫn tồn tại sau phản ứng, do đó phản ứng glycosyl hóa hoàn thành, dung dịch phản ứng được tách ra và tinh chế, và cuối cùng là phương pháp tinh thể để có được độ tinh khiết cao ascorbyl glucoside sản phẩm.
Cơ chế hoạt động của Ascorbyl Glucoside
Ascorbyl Glucoside có cấu trúc bao gồm một nhóm của L-ascorbic Acid và Glucose. Khi thẩm thấu qua da, thành phần này sẽ được enzyme alphe-glucosidase phân chia thành L-ascosbic Acid và Glucose tách biệt.
Khi đó, thành phần này cũng sẽ sở hữu chức năng tương tự như L-ascorbic acid thông thường, có khả năng hoạt động như một coenzyme kích thích quá trình tổng hợp Collagen của da.
Indian frankincense là gì?
Indian frankincense còn gọi là tinh dầu nhũ hương, được chiết xuất từ nhựa cây Boswellia Carterii, Boswellia Serrata và Boswellia Ferreana. Loại cây thân gỗ Boswellia được trồng chủ yếu ở Pakistan và Somalia. Tinh dầu Indian frankincense được chưng cất hơi nước. Indian frankincense còn được gọi là Olibanum hay có tên tiếng Anh là Frankincense essential oil.
Indian frankincense xuất phát từ thuật ngữ “Franc encens” trong tiếng Pháp cổ có nghĩa là mùi hương. Đặc biệt trong Kitô giáo frankincense như là món quà của Chúa ba ngôi trao cho Chúa Giêsu.
Frankincense có màu vàng nhạt, có tính nhớt, mùi hương gỗ ngọt ngào và quyến rũ nên thường được sử dụng trong các sản phẩm chăm sóc da và nước hoa.
Công thức hóa học của frankincense (tinh dầu nhũ hương) là C20H32O4 và tan trong rượu.
Các hợp chất hóa học chính trong tinh dầu nhũ hương bao gồm nhựa axit (khoảng 56%), kẹo cao su (khoảng 30-36%), axit 3-acetyl-beta-boswellic, axit alpha-boswellic , 4- Axit O-methyl-glucuronic, incensole acetate, phellandrene, a -pinene, actanol, incensole acetate, Linalool, octyl acetate, bornyl acetate, (+) - cis- và (+) - axit trans-olibanic.
Điều chế sản xuất
Indian frankincense được chiết xuất từ thực vật và được sử dụng như một phương thuốc Ayurvedic để điều trị một số bệnh. Nhựa cây Boswellia Carterii đã được sử từ rất lâu trong y học dân gian châu Phi và châu Á. Frankincense được cho là có thể điều trị bệnh viêm mãn tính cũng như một số tình trạng sức khỏe khác. Frankincense có sẵn dưới dạng nhựa thông, thuốc viên hoặc kem. Frankincense có hương thơm nhẹ nhàng ấm áp và thường để chiết xuất tinh dầu nguyên chất.
Cơ chế hoạt động
Indian frankincense có khả năng ngăn chặn việc sản xuất các chất giống như hormon trong cơ thể là tác nhân gây viêm khớp. Axit trong nhựa cây góp phần vào đặc tính chống viêm. Các axit này ức chế 5-lipoxygenase (5-LO), một loại enzyme sản xuất leukotriene. Axit axetyl-11-keto-β-boswellic (AKBA) được cho là mạnh nhất.
Sản phẩm liên quan